	Operations and Algebraic Thinking (Mondays)
Interpret a multiplication equation as a comparison.	p. $4 \# 1$ p. $7 \# 1$ p. $10 \# 1$ p. $13 \# 1$ p. $19 \# 1$ p. $22 \# 1$ p. $25 \# 1$ p. $31 \# 4$ p. $34 \# 1$ p. $37 \# 1$ p. $46 \# 4$ p. $49 \# 4$ p. $52 \# 1$ p. $55 \# 1$ p. $61 \# 1$ p. $64 \# 3$ p. $76 \# 2$ p. $79 \# 2$ p. $82 \# 1$ p. $85 \# 1$
Multiply or divide to solve word problems involving multiplicative comparison.	$\begin{array}{lcllllll} \hline \text { p. } 1 \# 1 & \text { p. } 13 \# 4 & \text { p. } 22 \# 2 & \text { p. } 40 \# 3 & \text { p. } 43 \# 4 & \text { p. } 52 \# 2 & \text { p. } 58 \# 2 & \text { p. } 61 \text { \#3 } \\ \text { p. } 67 \# 1 & \text { p. } 76 \# 3 \end{array}$
Solve multistep word problems posed with whole numbers. Represent these problems using equations with a letter standing for the unknown quantity.	p. $4 \# 3$ p. $7 \# 3$ p. $10 \# 1-2$ p. $13 \# 3$ p. $16 \# 2$ p. $19 \# 4$ p. $28 \# 3$ p. $31 \# 1$ p. $34 \# 3$ p. $37 \# 3$ p. $40 \# 3$ p. $43 \# 4$ p. $46 \# 1$ p. $49 \# 2$ p. $55 \# 2$ p. $61 \# 3$ p. $64 \# 1$ p. $70 \# 1,4$ p. $73 \# 1$ p. $76 \# 1,3$ p. $79 \# 1$ p. $82 \# 3$ p. $85 \# 2-3$ p. $88 \# 3$
Find all factor pairs for a whole number in the range 1-100. Determine whether a whole number is a multiple of a given number. Determine whether a whole number is prime or composite.	
Generate a number or shape patterns that follows a given rule.	$\begin{array}{llllllll}\text { p. } 1 \text { \#4 } & \text { p. } 4 \# 4 & \text { p. } 7 \# 4 & \text { p. } 10 \# 4 & \text { p. } 13 \# 2 & \text { p. } 16 \# 3-4 & \text { p. } 19 \# 2 & \text { p. 22\#3-4 }\end{array}$ p. 25 \#3-4 p. 28 \# 4 p. 31 \#2 p. 34 \#4 p. 37 \#4 p. 40 \#2, 4 p. 43 \#3 p. 46 \#2-3 p. 49 \#3 p. 55 \#3-4 p. 58 \#4 p. 61 \#4 p. 64 \#4 $\begin{array}{lllllll}\text { p. } 67 \# 3-4 & \text { p. } 70 \# 2 & \text { p. } 73 \# 3-4 & \text { p. } 76 \# 4 & \text { p. } 79 \# 3-4 & \text { p. } 82 \# 4 & \text { p. } 85 \# 4\end{array}$ $\begin{array}{llll}\text { p. } 88 \text { \#4 Tuesdays } & \text { p. } 34 \text { \#2 } & \text { p. } 49 \text { \#3 }\end{array}$
	Number and Operations in Base Ten (Tuesdays)
Recognize that a digit in one place represents ten times what it represents in the place to its right.	p. $4 \# 1$ p. $7 \# 1$ p. $10 \# 1,3$ p. $16 \# 1$ p. $22 \# 1$ p. $28 \# 1$ p. $31 \# 1$ p. $37 \# 1$ p. $46 \# 1$ p. $49 \# 1$ p. $55 \# 1$ p. $58 \# 1$ p. $61 \# 1$ p. $64 \# 3$ p. $73 \# 2$
Read and write numbers using numerals, names, and expanded form. Compare numbers using >, $=$, and $<$.	$\left.\begin{array}{llllllllll}\text { p. } 1 \# 1,3 & \text { p. } 7 \# 3 & \text { p. } 10 \# 2 & \text { p. } 13 \# 1 & \text { p. } 16 \# 2 & \text { p. } 22 \# 2-3 & \text { p. } 25 \# 2 & \text { p. } 28 \# 3 \\ \text { p. } 34 \# 1,4 & \text { p. } 40 \# 3 & \text { p. } 43 \# 2 & \text { p. } 46 \# 2 & \text { p. } 52 \# 2-3 & \text { p. } 55 \# 2 & \text { p. } 64 \# 2\end{array}\right]$p. $70 \# 1-2$ p. $76 \# 2-3$ p. $79 \# 1-2$ p. $85 \# 1-2$ p. $88 \# 2$
Use place value understanding to ro numbers.	p. $1 \# 2$ p. $7 \# 2$ p. $13 \# 2$ p. $19 \# 2$ p. $25 \# 3$ p. $28 \# 2$ p. $31 \# 2$ p. $37 \# 2$ p. $40 \# 2$ p. $43 \# 1$ p. $49 \# 2$ p. $52 \# 1$ p. $58 \# 2$ p. $61 \# 2$ p. $67 \# 2$ p. $73 \# 1$ p. $76 \# 1$ p. $82 \# 1$ p. $88 \# 1$
Add and subtract multi-digit numbers.	p. $1 \# 4$ p. $4 \# 3$ p. $7 \# 4$ p. $10 \# 3$ p. $13 \# 4$ p. $16 \# 4$ p. $19 \# 4$ p. $31 \# 4$ p. $34 \# 3$ p. $37 \# 4$ p. $40 \# 1$ p. $46 \# 3$ p. $55 \# 3$ p. $58 \# 3$ p. $61 \# 4$ p. $64 \# 1$ p. $67 \# 1$ p. $73 \# 4$ p. $82 \# 3$ p. $85 \# 3$
Multiply—using equations, arrays, and/or area models.	$\begin{array}{llllllll}\text { p. } 4 \# 4 & \text { p. } 16 \# 3 & \text { p. } 19 \# 3 & \text { p. } 34 \# 2 & \text { p. } 40 \text { \#3 } & \text { p. } 43 \# 3-4 & \text { p. } 49 \# 4 & \text { p. } 52 \# 3\end{array}$ $\begin{array}{lllllll}\text { p. } 61 \text { \#3 } & \text { p. } 67 \text { \#3 } & \text { p. } 70 \# 4 & \text { p. } 73 \text { \#3 } & \text { p. } 79 \# 3 & \text { p. } 82 \# 4 & \text { p. } 88 \# 4\end{array}$
Find quotients and remainders-using equations, arrays, and/or area models.	p. $10 \# 4$ p. $22 \# 4$ p. $25 \# 4$ p. $28 \# 4$ p. $31 \# 3$ p. $37 \# 3$ p. $46 \# 4$ p. $49 \# 3$ p. $55 \# 4$ p. $58 \# 4$ p. $64 \# 4$ p. $67 \# 4$ p. $70 \# 3$ p. $76 \# 4$ p. $79 \# 4$ p. $85 \# 4$
	Number and Operations-Fractions (Wednesdays)
Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$.	p. $2 \# 3$ p. $5 \# 1$ p. $8 \# 2$ p. 11 $\# 2$ p. $14 \# 2$ p. $20 \# 1$ p. $23 \# 2$ p. $26 \# 4$ p. $29 \# 1$ p. $32 \# 2$ p. $35 \# 1-2$ p. $38 \# 1-2$ p. $41 \# 1$ p. $44 \# 1-2$ p. $47 \# 1$ p. $50 \# 1-2$ p. $53 \# 1$ p. $56 \# 1$ p. $59 \# 1$ p. $68 \# 1$ p. $74 \# 1$
Compare two fractions with different numerators and different denominators using >, =, or <.	p. $2 \# 2$ p. $5 \# 2$ p. $11 \# 3$ p. $17 \# 1-2$ p. $20 \# 3$ p. $23 \# 3$ p. $26 \# 1-2$ p. $29 \# 2$ p. $32 \# 3$ p. $35 \# 3$ p. $41 \# 2$ p. $62 \# 2$ p. $83 \# 1$
Understand-a fraction as a sum of fractions; decompose fractions, add and subtract mixed numbers, and solve word problems by using visual fraction models.	$\begin{array}{llllllll}\text { p. } 2 \# 4 & \text { p. } 5 \# 4 & \text { p. } 8 \# 3 & \text { p. } 14 \# 4 & \text { p. } 17 \# 4 & \text { p. } 20 \# 2 & \text { p. } 23 \# 4 & \text { p. } 26 \# 4\end{array}$ p. 32 \#4 p. 38 \#3-4 p. 41 \#3 p. 44 \#3 p. 47 \#2 p. 48 Brain Stretch p. 50 \#3 p. 53 \#2, 4 p. 54 Brain Stretch p. 56 \#2-3 p. 59 \#2 p. 65 \#2 p. 68 \#3 p. 69 Brain Stretch p. 71 \#2-3 p. 74 \#2 p. 77 \#2 p. 80 \#3 p. 83 \#3 p. 86 \#3-4 p. 89 \#2-4

Multiply a fraction by a whole number, and solve word problems by using visual fraction models.	p. 15 Brain Stretch p. $17 \# 4$ p. $29 \# 4$ p. $41 \# 4$ p. $44 \# 4$ p. $47 \# 3-4$ p. $50 \# 4$ p. $53 \# 3$ p. $59 \# 4$ p. $62 \# 3-4$ p. $65 \# 4$ p. $68 \# 4$ p. $71 \# 4$ p. $74 \# 4$ p. $77 \# 3-4$ p. $80 \# 4$ p. $83 \# 4$ p. $89 \# 4$ Friday p. $48 \# 3$
Express a fraction with denominator 10 as an equivalent fraction with denominator 100.	$\begin{array}{lllllll}\text { p. } 11 \# 2 & \text { p. } 23 \# 2 & \text { p. } 29 \# 1 & \text { p. } 32 \# 2,4 & \text { p. } 38 \# 3 & \text { p. } 41 \# 3 & \text { p. } 44 \# 3\end{array}$ p. 50 \#1, 3 p. 59 \#2 p. 71 \#2
Use decimal notation for fractions $x / 10$ or x/100.	$\begin{array}{lllllllll} \text { p. } 5 \# 3 & \text { p. } 8 \# 4 & \text { p. } 11 \# 4 & \text { p. } 14 \# 3 & \text { p. } 17 \# 3 & \text { p. } 26 \# 3 & \text { p. } 35 \# 4 & \text { p. } 59 \# 3 \\ \text { p. } 68 \# 2 & \text { p. } 71 \# 1 & \text { p. } 74 \# 3 & \text { p. } 77 \# 1 & \text { p. } 80 \# 1 & \text { p. } 83 \# 2 & \text { p. } 89 \# 1 \end{array}$
Compare (using >, $=$, or <) two decimals to hundredths by reasoning about their size.	$\begin{array}{ccccccl}\text { p. } 11 \# 1 & \text { p. } 14 \# 1 & \text { p. } 20 \# 4 & \text { p. } 29 \# 3 & \text { p. } 56 \# 4 & \text { p. } 65 \# 3 & \text { p. } 80 \# 2\end{array}$
	Measurement and Data (Thursdays \& Fridays)
Know relative sizes of measurement units within one system of units. Record measurement equivalents in a two-column table.	Fridays p. 3 \#1, Brain Stretch p. 9 \#1-3, Brain Stretch p. 12 \#1-2 p. 18 \#1-3 p. 21 \#1-2 p. 24 \#1, 2 p. 27 Brain Stretch p. 30 \#1-3 p. 33 \#1-2 p. 39 \#1-3 p. 42 Brain Stretch p. 45 Brain Stretch p. 51 \#1-2 p. 57 \#1-2 p. 60 \#1-2 p. 63 Brain Stretch p. 69 \#1-2 p. 72 \#1-2 p. 84 \#1-3, Brain Stretch p. 90 \#1-2
Solve word problems involving measurement.	Fridays p. 3 \#2, 4, Brain Stretch p. 6\#1-7 p. 9 \#3, Brain Stretch p. 12 \#2-3, Brain Stretch p. 15 \#3, Brain Stretch p. 18 \#2-3, Brain Stretch p. 21 \#3, Brain Stretch p. 24 \#3 p. 27 \#4-5, Brain Stretch p. 30 \#2-4, Brain Stretch p. 33 \#2, 4, Brain Stretch p. 36 \#3-5, Brain Stretch p. 39 \#2-3, Brain Stretch p. 42 \#3-5, Brain Stretch p. 45 \#1-5, Brain Stretch p. 48\#2-3, Brain Stretch p. 51 \#3, Brain Stretch p. 54 \#1-5, Brain Stretch p. 57 \#3, Braín Stretch p. 60 \#3, Brain Stretch p. 63 \#1, 3, Brain Stretch p. 66 \#1-5 p. 69 \#4, Brain Stretch p. 72 \#3-4, Brain Stretch p. 75 \#2-3, Brain Stretch p. 78 \#2, 6, Brain Stretch p. 81 \#1-6 p. 84 \#3-4, Brain Stretch p. 87 \#2-3 p. 90 \#3-4 Tuesday p. 67 \#1
Apply the area and perimeter formulas for rectangles.	Fridays p. $3 \# 3$ p. $9 \# 4$, Brain Stretch p. $12 \# 4$, Brain Stretch p. $18 \# 4$ p. $21 \# 4$ p. $24 \# 4$ p. $30 \# 4$ p. $33 \# 3-4$ p. $39 \# 4$ p. $51 \# 4$ p. $57 \# 4$ p. $60 \# 4$ p. $69 \# 3-4$ p. $72 \# 4$ p. 75 Brain Stretch p. $84 \# 3$ p. $90 \# 2,4$
Make a line plot to display a data set of measurements in fractions of a unit.	Fridays p. $48 \# 1$ p. $63 \# 2$ p. $75 \# 1$ p. $78 \# 1$ p. $87 \# 1$
Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint.	Thursdays p. $2 \# 4$ p. $8 \# 3-4$ p. $11 \# 3-4$ p. $14 \# 2$ p. $23 \# 2$ p. $29 \# 2$ p. $32 \# 4$ p. $38 \# 2$ p. $41 \# 1$ p. $44 \# 2,4$ p. $47 \# 2-3$ p. $50 \# 2$ p. $53 \# 2$ p. $59 \# 3$ p. $62 \# 4$ p. $65 \# 2$ p. $74 \# 4$ p. $80 \# 2-3$ p. $86 \#$ all p. $89 \# 1$
Measure and sketch angles in wholenumber degrees.	Thursdays p. $17 \# 2$ p. $26 \# 2$ p. $32 \# 1$ p. $35 \# 2-3$ p. $38 \# 1$ p. $41 \# 1,2$ p. $47 \# 1$ p. $50 \# 1,4$ p. $53 \# 1-2$ p. $56 \# 2$ p. $59 \# 1-2,4$ p. $62 \# 2$ p. $68 \# 2$ p. $71 \# 1$ p. $89 \# 2$ 2
R	Thursdays p. $23 \# 3$ p. $26 \# 3$ p. $38 \# 2$ p. $47 \# 2$ p. $50 \# 4$ p. $56 \# 3$ p. $59 \# 2$ p. $62 \# 4$ p. $65 \# 3$ p. $74 \# 3$ p. $77 \# 4$ p. $83 \# 3$ p. $89 \# 4$ Friday p. $84 \# 5$
	Geometry (Thursdays)
Draw and identify points, lines, line segments, rays, angles, and perpendicular and parallel lines.	p. 2\#1-2 \quad p. 5\#1-2 \quad p. 8\#1,3 \quad p. 11 \#1 \quad p. 14\#1-2 \quad p. 17 \#1-2 \quad p. $20 \# 1-2$ $\begin{array}{llllll}\text { p. } 23 \# 1-2 & \text { p. } 26 \# 1-2 & \text { p. } 29 \# 1-2,4 & \text { p. } 32 \# 1-2 & \text { p. } 35 \# 1-3 & \text { p. } 38 \# 1\end{array}$ $\begin{array}{llllll}\text { p. } 39 \# 1 & \text { p. } 41 \# 2-3 & \text { p. } 44 \# 1 & \text { p. } 47 \# 1,3 & \text { p. } 50 \# 1,3 & \text { p. } 53 \# 1-3\end{array}$ $\begin{array}{llllll}\text { p. } 56 \# 1-2,4 & \text { p. 59\#1, 3-4 } & \text { p. } 62 \# 1-2 & \text { p. } 65 \# 1-2,4 & \text { p. } 68 \# 1-2 & \text { p. } 71 \# 1-2\end{array}$ $\begin{array}{llll}\text { p. } 74 \# 1-2 & \text { p. } 77 \# 1-2 & \text { p. } 80 \# 1-3 & \text { p. } 81 \text { Brain Stretch } \\ \text { p. } 83 \# 2\end{array}$ p. 87 Brain Stretch p. 89 \#1-2
Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or angles of a specified size.	
Recognize a line of symmetry.	$\begin{array}{lllllll}\text { p. } 2 \text { \#3 } & \text { p. } 14 \# 3 & \text { p. } 32 \# 3 & \text { p. } 44 \text { \#3 } & \text { p. } 53 \# 4 & \text { p. } 71 \text { \#4 } & \text { p. } 89 \# 3\end{array}$

Visit www.creativeteaching.com to find out how this book correlates to Common Core and/or State Standards.

Student Assessment

Customize page 93 to reflect the standards you are working on. Simply write the standard numbers in the columns across the top.

LTONDAYY Operations and Algebraic Thinking

1 Which property of multiplication is shown?
$8 \times 5=40 \quad 5 \times 8=40$
A. associative
B. commutative
C. identity

3 Label the numbers as prime (P) or composite (C).
A. 7 \qquad
B. 18 \qquad
C. 61 \qquad

TUESDAY Operations in Base Ten

2 Round the number to the nearest ten. 137,878 \qquad
$420+50=$ \qquad

2 Circle the unknown quantity in the equation.
$17+2+x=22$

4 Find the missing number in the sequence.

1 Which digit is in the hundreds place?

CMIDNESDAY Fractions

1 Write the fraction that names the shaded part.

3 Complete the equivalent fraction.

$$
\frac{1}{5}=\frac{}{10}
$$

2 Which fraction is larger? Write < or >.

4 Complete the addition statement.

THUBSDAY Geometry

1 Draw and label a point.

3 How many lines of symmetry?

2 Classify the following pair of lines.
A. intersecting
B. parallel
C. perpendicular

4 What fraction of a turn is this angle?

A. $\frac{1}{4}$ turn
B. $\frac{3}{4}$ turn
C. 1 full turn
D. $\frac{1}{2}$ turn

FBIDAY

 Measurement and Data1 Complete the table.

Feet	Inches
1	12
2	
3	
4	

3 Shade in a shape with an area of 9 square units. What is the perimeter of your shape?

2 Liam walked 1.4 km to the beach. How many meters did he walk? Make a table for kilometers and meters to help you.

4 What time does Laura have to leave to be at home by 3:15 if the trip takes 90 minutes? Complete the number line to show your work.
$\begin{array}{lllllll}1: 30 & 1: 45 & 2: 00 & 2: 15 & 2: 30 & 2: 45 & 3: 00\end{array} \quad 3: 15$

BPANN STRENGH

Charlie and his friends want to see their favorite baseball team play this weekend. A ticket to the game costs $\$ 32.50$.
a) How much will it cost for four people to attend the game?
b) If the game begins at 1:00 p.m. and it takes Charlie and his friends 1.5 hours to get to the field, when should they leave?
c) If a program costs $\$ 5.25$, how much change will Charlie get if he pays with a $\$ 10$ bill?

MONDAY
 Operations and Algebraic Thinking

1 Which expression is equal to 4×5 ?
A. $5+5+5+5$
B. $4+4+4+4$
C. $5 \times 5+4$

3 Kara bought a DVD for \$22 and a CD for less than the cost of the DVD. Let c represent the cost of the CD. Write an inequality to show the cost of the CD.
c \square -

2 Fill in the blank to make the equation true.

56 - \qquad $=25-10$

4 Write the first 5 terms of this pattern:

Start at 10 and add 6 each time.

TUESDAYY Operations in base Ten

15 hundreds = \qquad ones

2 What is the value of the underlined digit?

234,761 \qquad

4 Draw a model to find the product.

$$
7 \times 7=
$$

CUEDNESDAY
 Fractions

1 Complete the equivalent fraction.

$$
\frac{1}{4}=\frac{}{12}
$$

3 a) Represent $\frac{11}{100}$ on the place value model.
b) Write the fraction as a decimal.

2 Which fraction is larger? Write < or >.

4 There are 12 markers in the box. Half of the markers are red.
How many of the markers are not red?

THUBSDAY Geometry

1 Draw and label a ray.

3 Describe the polygon. Name

Number of obtuse angles \qquad Number of acute angles \qquad

2 Classify the following pair of lines. Circle all the descriptions that apply.

A. intersecting
B. parallel
C. perpendicular

4 An obtuse triangle has
A. one 90° angle
B. one angle greater than 90°
C. all angles less than 90°

FBIDAY

 Measurement and DataBen conducted a survey of his cousins to see how many books they read in a month. He displayed the data as a pictograph.

Number of Books Read

1 How many books were read altogether?
2 Who read the fewest books? \qquad
3 Which two people read the same number of books? \qquad
4 How many books did Michael and Ben read together? \qquad
5 How many more books did Kaitlyn read than Spencer? \qquad
6 How many fewer books did Michael read than Megan? \qquad
7 What is the range of the number of books read? \qquad -

3PANSTBITEH

Rick is older than Miguel. Miguel is older than Betty. Betty is older than Tina, and Vivienne is older than Rick. Who the oldest? Who is the youngest?

MONDAY Operations and Algebraic Thinking

1 Write a multiplication expression for the statement.

4 times as many as

2 Is the number 11 a prime number or a composite number? Build rectangles to show your answer. How many rectangles can you make?

3 Kas is 10 years older than Dina. Let y represent Dina's age in years.
Write an equation to show Dina's age in years.

IUSDAJY Operations in Base Ten

14 thousands = \qquad tens

2 Round 276 to the nearest hundred. Use a number line to help decide if 276 is closer to 200 or 300.

$4600+3,000=$

CMIDNESDAY Fractions

1 Write the fraction that names the shaded part.

3 Make a sum of a whole number and a number less than 1.
$\frac{5}{4}$
2 Complete the equivalent fractions.

4 Show $\frac{33}{100}$ on the number line.

THIDBSDAY Geometry

2 Name a quadrilateral that has:

- four sides of equal length
- four right angles

4 What fraction of a turn is this angle?
between 70° and 85°.
A. acute B. right C. obtuse

1 Draw and label a line.

3 Classify an angle that is

