Life of Sred ${ }^{\circ}$

Complex Chralysis

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

Votes Before ONe Begin

Take a peek at the college catalogs of most major universities. Math majors are required to take two years of calculus. Sometime in the third and fourth years every math major must take a course in real analysis and a course in complex analysis.

Let's look at these three subjects.

C』GCUGUS introduced the new concept of limits. Virtually everything flowed from $\lim f(x)$. The variable x stood for some real number.
 calculus. We stayed with the real numbers.

Complex \mathcal{H} biolysis plays with functions of complex numbers. In particular, we will expand calculus to include complex numbers such as $6+7 \mathrm{i}$. We will do some differentiating and integrating. You may see stuff like $\int \mathrm{f}(z) \mathrm{d} z$.

In the old days you saw $\int f(x) d x$ where x was in the real numbers. In this course z will be in the complex numbers.

When I am writing, I will use Times New Roman.
When you, my reader, are speaking, you will use this font.
When Fred is talking, he will use this font.

Prerequisites? Since we are going to be taking derivatives and antiderivatives, it would be nice if you have had the lower division two years of calculus.

Real analysis, linear algebra, logic, and statistics aren't required, but the more theoretical math you have had, the easier complex analysis will be.

The more you enjoy singing, dancing, laughing, and playing, the easier this book will be. We will get complex analysis done, but we will have as much fun as possible. If you are a grouch who just wants to "get it all done," then there are tons of complex analysis books that just give you definition, theorem, proof, definition, theorem, proof till your brain dries up and blows away.

On the other hand not being a quitter will make complex analysis possible for you. Except for Fred, few find this material easy.

In mathematics the stuff you already know seems ten times easier than the stuff you are learning. Do you remember how hard learning to add fractions was? It took weeks of sweat. You barely knew your times tables, and the teacher was yakking* about finding the least common denominator. How were you supposed to find the least common denominator of $\frac{1}{6}$ and $\frac{3}{8}$?

$$
\mathcal{A}_{n} \mathcal{A l i d e}^{2}
$$

Fred didn't have difficulty with this. Working with 6 and 8 , he factored both numbers: $2^{1} 3^{1}$ and 2^{3} and then chose the highest exponent on each prime.

$$
\text { LCD of } 6 \text { and } 8 \text { is } 2^{3} 3^{1}=24
$$

For 20, 24, 25, and 27, he factored:

$$
2^{2} 5^{1}, 2^{3} 3^{1}, 5^{2}, \text { and } 3^{3}
$$

The LCD is $2^{3} 3^{3} 5^{2}=5400$

[^0]
Contents

Chapter 1 The Conference. 12
the first Saturday in May, 13
a complex analysis course in the space of a single day, 14 the demand to use only real numbers and not define i as $\sqrt{-1}, 16$
Chapter 2 It Begins. 18
defining a complex number, 19
ordered quadruples, 21
defining addition in \mathbb{C}, 21
defining multiplication in \mathbb{C}, 22 \bar{z}, the conjugate of $z, 23$
|z|, 23
Chapter 3 Palm Trees 26
embedding R inside of $\mathbb{C}, 28$
Chapter 4 Polar Form. 31
rcis $\theta, 31$ multiplying in polar form, 31 de Moivre's theorem, 34
Chapter 5 Complex Functions. 35
plotting functions from the z -plane to the w-plane, 37
Chapter 6 Derivatives. 41
limit theorems, 43 derivative theorems, 43 derivatives in \mathbb{C}, 44 Cauchy-Riemann equations, 45 holomorphic functions, 49 region \boldsymbol{R} (connected, open sets), 50 a path in $\mathscr{R}, 51$ entire functions, 52
Chapter 7 Integration. 55
integration along a path, 55 a second definition of integration along a path, 58 a way of thinking about $\int_{\gamma} \mathrm{f}(z) \mathrm{d} z$, (Red Riding Hood), 59 the Fundamental Theorem of Complex Integration, 61
Chapter 8 Kinky Paths. 63
what to do with corners and cusps, 63 piecewise smooth paths, 64
Chapter 9 Cauchy's Theorem. 69
closed paths and simple paths, 69
Cauchy's theorem, 70
review of Green's theorem, 71 Cauchy-Goursat theorem, 73 paths in the opposite direction, 74
Chapter 10 Favorite Functions Moved to \mathbb{C}. 80
$\mathrm{e}^{\mathrm{z}}, 80$
$\sin \mathrm{z}$ and $\cos \mathrm{z}, 83$
$\sinh \mathrm{z}$ and $\cosh \mathrm{z}, 84$ $\arg z$ and $\log z, 85$

 \(\mathrm{i}^{\mathrm{i}}, 89\)
 Morera's theorem, 91
Chapter 11 The Big Picture. 92
prejudice against the second coordinate, 93
Chapter 12 A Pretty Path. 96
circles in polar coordinates, 97
Chapter 13 Nasty Points. 99
ordinary points, 100 removable singularities, 100 poles, 101 essential singularities, 101 L'Hospital's rule, 104
Chapter 14 In the Land of the Meromorphic. 106
order of a pole, 106 meromorphic functions, 106 Casorati-Weierstrass theorem, 109 Picard's great theorem, 112
Chapter 15 Create a Pole. 115
closed paths and simple paths, 116 Cauchy's formula for poles of order one, 117 Cauchy's formula for poles of any order, 118 an infinite number of derivatives, 118
Chapter 16 Two Poles 121
Kingie's art lecture, central to working with two poles, 122
Chapter 17 Likable Liouville. 125
the proof, 126 Fundamental theorem of algebra, 127
Chapter 18 Taylor Series. 128
using the Taylor series, 128
Chapter 19 From Taylor to Laurent. 131
the series for $\mathrm{e}^{\mathrm{z}}, \sin \mathrm{z}, \cos \mathrm{z}$, and the geometric progression, 131
Chapter $20 \quad$ Between the $7^{\text {th }}$ and $8^{\text {th }}$ Poles. 135
the full Laurent series and its proof, 137 what the number of terms in the principle part tells us, 140
Chapter 21 Residues. 142
the Residue theorem, 147 computing $\operatorname{Res}\left(\mathrm{f}, \mathrm{z}_{5}\right), 149$
Chapter 22 Proof of the Residue Theorem. 151
in three steps, 151
Chapter 23 The Notation for Residues. 155
official definition of $\operatorname{Res}\left(f, z_{5}\right), 156$ the fragility of $\int\left(z-z_{0}\right)^{k} \mathrm{~d} z$, the Poof! lemma, 160
Chapter 24 The Conference Ends. 163
analytic continuation, 164 the Riemann Zeta function, 165 conformal functions, 166
homotopic paths, 166
harmonic functions, 169
Index 172

Fred's heart felt sore. That's how he expressed it. As the news of his famous teaching technique had spread around the world, people emailed him. They wrote to him. They phoned him. Some went to Kansas to see him in person.

The big question was Complex $\mathcal{H z a b y s i g . ~ M a n y ~ w e r e ~}$ asking when Fred was going to teach it at KITTENS University. They said that if Fred taught it, they would leave their current college and matriculate to KITTENS so they could take it from the master teacher.

Fred looked at his current teaching schedule.

```
8-9 Arithmetic
9-10 Beginning Algebra
10-11 Advanced Algebra
11-noon Geometry
noon-1 Trigonometry
1-2 Calculus
2-3 Statistics
3-3:05 Break
3:05-4 Linear Algebra
4-5 Seminar in Biology, Economics, Physics, and Metamathematics.
```

Then he remembered that he was teaching four classes in the early morning.

```
4-5 Set Theory
5-6 Modern Algebra
6-7 Abstract Arithmetic
7-8 Topology
```



```
These four were added in Life of Fred: Five Days of Upper Division Math 7-8 Topology
```

The president of KITTENS closed all the buildings at 5 p.m., so Fred couldn't add Complex Analysis to the end of his teaching day. The president also didn't allow classes on the weekend, because it made KITTENS look like it was too dedicated to education. Instead, he rented out the university buildings and grounds to events and conferences. Those things were news. They made the president famous and brought in more money.

So Fred's heart hurt.
The solution was obvious, but it took Fred 0.0003 seconds to figure it out.

It was announced in the school newspaper.

The KITTEN Caboodle

Complex Analysis Conference!

KANSAS: Fred Gauss has just announced you-know-what.

Caboodle question: When did you think of this?
Fred: 0.0003 seconds ago.

Caboodle question: When and where will it be held?
Fred: On the first Saturday in May, which is two days from now. It will be held in room 123 of the Archimedes Building, the largest auditorium on campus. It starts at 7 a.m.

Caboodle question: Who in the world would want to come to a complex analysis conference on a Saturday at 7 o'clock in the morning?
Fred: Here is a photograph of those who have already signed up.

I will cover a standard course in complex analysis at the conference.

There will be many more attending once the word really gets out.

Stop! Hold it. I, your reader, have got al lot of questions beiore this thing gets out of hand.

This is one of the few math books where the reader can talk back to the author. What's your first question?

Is it true that this Jred is only six years old; that he is that famous; that people are that eager to experience his teaching?

Those are easy questions to answer.

Yes, yes, and yes.

People are coming from everywhere.

The newspaper article reported that Jred said that he would "cover a standard course in complex analysis at the conierence." We know that newspapers often get things wrong. How can Jred do a complex analysis cour'se in the space of a single day? A standard complex analysis course at the upper division level of a university talies a semester.

Did anyone ever mention to you that Fred is really good at teaching? And, if Fred is up to his usual tricks, he will toss in stories and other poetry/history/music/geography/and so on. As they say, Fred's teaching is like Lake Victoria.*

Huh?
It ain't dry.

I just read your footnote. What's the largest ireshwater lake in the world?

Lake Superior in North America.
Wait a minute! You distracted me. I've got al real beef** about complex analysis, and I need to get it satid beiore Jred starts his conierence on Saturdaly.

I'm listening.
I've allready seen complex numbers. In advanced algebra we solved quadratic equations

like $a^{2} x^{2}+b x+c=0$ using the quadratic iormula. When we got at negative number under the square root sign, we were told that $\sqrt{-1}=i$, and that i is imaginary. I wanted to throw up. Everyone wondered, "What good is that!"

Then in trig they switched from rectangular' a + bi to polar iorm, which was $\mathbf{r}(\cos \theta+i \sin \theta)$. I remember changing $\sqrt{3}+i \operatorname{into} 2 \cos 30^{\circ}$ $+2 i \sin 30^{\circ}$, which was called 2 cis 30°.

[^1]Then we got hit with de Moivre's theorem so we could do powers and square roots of complex numbers.

And all I could think of was that this stuif was imaginary. It was pixy dust. As useiul as learning Icelandic. (Actually, I said stufi that we can’t print in this (\mathbf{j}-rated book.)

I get the feeling that I know where you are heading.
Wrong, Mr. Author. You think I'm going to ash that Jred stichi in a bunch of useful stuif in his complex analysis conierence. At least some things that will tickle my imagination. De Moivre's raising $5+6 i$ to the hundredth power-like we did in trig-just won't do it.

How about...
$*$ Finding $\log _{6}(-6)$?

$$
\begin{aligned}
& \mathcal{A n}_{n} \mathcal{A}_{\text {side }} \\
& \text { You don't have to read any of these } \\
& \text { "Asides" in this book. I'm writing them for } \\
& \text { my entertainment or to include review } \\
& \text { material or to solve messy equations that no } \\
& \text { human should have to read. } \\
& \log _{8} 8 \text { asks, "What power do you raise } 2 \text { to } \\
& \text { in order to get } 8 \text { ?" } \log _{2} 8=3 \text {. } \\
& \log _{100} 10=\frac{1}{2} \text { since } 100^{1 / 2}=\sqrt{100}=10 \\
& \text { There is no way that } \log _{6}(-6) \text { makes any } \\
& \text { sense. Raising } 6 \text { to any power will always } \\
& \text { give you a positive answer. }
\end{aligned}
$$

* Raising i to the ith power, i^{i}, and getting a real number answer! $*$ Finding a number z such that $\sin (z)=40$.

No you can't. The value of the sine function is always between -1 and 1. My trig booli told me that.

And your elementary school books told you that $4-7$ can't be done.

Lies! Lies! All I get is poppycock.
Or it may be that you weren't ready for the bigger truth.
Take, for example, the Easter Bunny. They may have told you this untruth because you were too young to hear the whole story of some innocent man who was tortured to death.

When you got old enough you may have realized . . .

1. Rabbits don't lay eggs.
2. Laying eggs indicates sexual maturity which bunnies don't have.
3. The brown things that rabbits poop are not chocolate.
4. Those 1 -inch diameter chocolate eggs are way too large. They would kill any rabbit who tried to deliver one of them. They would be like a woman trying to give birth to a 40 -pound baby.

Again, you got ofi track-Sarah Thomas and the Easter Bunny! Set me try again. When Jred does his Saturdaly conierence, I don't want him to even mention the imaginary number i. If he wants to talli albout the real numbers, that's fine with me. That's calculus-type material. I can handle that.

I understand that Complex Analysis means calculus with the complex numbers like $3+\boldsymbol{8 i}$. (ß nice definition)

I have been lied to enough. They defined i by $i=\sqrt{-1}$. . $h i s$ is nuts. I was explicitly told in algebra that \sqrt{x} meant the non-negative number whose square is x.

Is i positive or zero?
No.
Then they gave me the lie that i was defined by $i^{2}=-1$. . h is is also a lousy definition. Except for zero, isn't it always true that $\boldsymbol{x}^{2}=$ anything always has two possible answers? Aren't there two dififerent numbers that satisity $\boldsymbol{x}^{2}=\mathbf{- 1}$?

Yes and yes. When you were told that i was defined by $\mathrm{i}^{2}=-1$, you were being Easter Bunnied.

My Demands

1. Only real numbers.
2. No phony definitions of i.

Pass that along to fred and see what he says.
I will, but I can't promise anything.

Chapter One The Conference

When I saw Fred that evening，Fred＇s response to the demands was what might have been expected．

He passed out
ξ_{3}

s

As Fred began to wake up，he was mumbling ．．．
${ }_{3}{ }^{3}$ teach ice skating to people who live in the desert
施 teach complex analysis using only real numbers in teach surfing to people in jail

解 teach complex analysis using only real numbers
${ }_{3}{ }_{3}$ teach logarithms to three－year－olds
放 teach complex analysis using only real numbers
Fred awoke and smiled．＂No sweat．I was deep into getting ready for the Complex Analysis Conference．＊This will take a＂slight＂adjustment in order to use only real numbers．And no Easter Bunny definitions of i．l＇ll give them the real thing．＂

I，your reader，am amazed．I thought I was asking the impossible． Where do I sign up for the conierence？

I have already signed you up．
＊Fred was reviewing holomorphic functions．＂Holomorphic functions＂ sounds intimidating right now．That＇s because you haven＇t attended the conference yet．

Do you remember looking at a calculus book before you took the course？ $\int_{x=a}^{b} x^{3} d x$ and $\ddot{y}=8 t$ were utterly mystifying．
algebraically closed are the complex numbers 127
Analytic Continuation 164
analytic function. 52
any two paths to Grandma's houseIndependent Path theorem75
argument of the polar form $\arg \mathrm{z}$. 85
Casorati-Weierstrass theorem 108-110
Cauchy-Riemann equations 45-48
contrapositive 48
Cauchy-Goursat theorem. 72, 73
Cauchy's formula 115, 116
for a pole of order one 117
for poles of any order. 118
proof. 120
Cauchy's theorem. 70
circles
in polar form 97
closed path. 69
complex functions graphing. 36
complex numbers absolute value 23
addition. 21
conjugates 23
defined as ordered pairs 19
multiplication 22
Conformal Functions 166
corners and cusps 63, 65, 73
de Moivre's theorem. 34
derivative rules 43
derivatives in C
definition 44, 45
Descartes 125
differentiable at a point. 49
elliptical construction 35
embedding
\mathbb{N} into \mathbb{Z} 28
Z into Q 28
English channel swimming. 14
entire functions. 52
essential singularity definition. 106
$\exp (\mathrm{z})$
definition 80, 81
laws of exponents. 81, 82
power series 131
function range 35
Fundamental Theorem of Algebra 127
proof. 127
Fundamental Theorem of Complex Integration 60, 61
proof. 61
geometric power series 131

Andex

George Frederic Watts painting of Red Riding Hood87
graphing complex functions 36
in polar form. 96
Green's theorem. 71, 72
Harmonic Functions 169, 170
applications. 171
holomorphic functions. 49
Homotopic Paths.
166-169
i defined. 29
i to the i power 89
Independent Path theorem. 76
infinite number of derivatives118
integration
along a path, definition. 55
along a path, the formula58
around two poles 124
Fundamental Theorem of Complex Integration 60, 61
in terms of Red Riding Hood59, 60
Jordan curve theorem. 116
Kingie's art lecture. 122
Laurent coefficients 160
Laurent series 142
enclosing pole or poles136, 137, 142
principal part 140, 141
proof. 137-140
with no singularities. 131
limit theorems. 43
line integral. 71
Liouville theorem 126
Lemma for Liouville. 126
$\log \mathrm{z}$
definition. 85
finding $\log (-2)$ 87
L'Hospital's rule. 104
proof. 105
meromorphic functions. 106, 121
Morera's theorem. 91
mutatis mutandis. 57
$\mathbb{N}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$, and \mathbb{C}. 19
nasty points-singularities. 99
open set. 50
order of a pole. 101
definition 106
ordered quadruples. 21
path 51
closed. 69, 116
corners and cusps. 63, 65
from P to Q defined. 57
opposite path. 74
piecewise smooth. 64
simple. 69, 116
simply connected. 169
smooth. 64
Picard's great theorem. 112
polar to rectangular form. 32
poles
definition. 101
order of a pole. 101
turn holomorphic into a pole 115
power series. 128
r cis θ. 31

Cndex

思區C周P
\＃1． 40
\＃2． 77， 78
\＃3． 114
rectangular to polar form 31
region 50
regular function． 52
related angle 34
residue definition 156
Residue theorem． 147
computing Res（f，z）． 149,150
proof． 151－153
why it is called residue157－160
Riemann Zeta Function 165
Sarah Thomas 14
simple path． 69
\sin and \cos
definitions 83
power series． 131
singularities
essential． 101
isolated． 100
poles 101
removable 100
sinh and cosh
definitions 84
small essays
Complex Analysis Isn＇t AllThat Bad70
Happiness Through Chunking26
Mathematicians Are OftenLike Other Humans30
On Being a Snob 52
Prejudice Against the Second Coordinate 93
Taylor＇s series 128
$u(x, y)+i v(x, y)$ ． 37

[^0]: * The present progressive form of yak can be spelled either yakking or yacking. English is harder than complex analysis.

[^1]: * Lake Victoria is the second largest freshwater lake in the world. It is in Africa. Its length from north to south is 210 miles. No one has ever swum that length.

 Some people have swum the English channel (21 miles). It was first done in 1875 and took almost 22 hours. In the 1950s people were doing it in about 12 hours. In 2019 (that's almost news) Sarah Thomas took 54 hours and 10 minutes to swim it four times without stopping.
 ** Beef is slang for a complaint.

