

The Art of Problem Solving Pre-Test Introduction to Counting & Probability

If you know basic algebra well enough to solve the problems below, you are ready for the Art of Problem Solving's *Introduction to Counting & Probability* book.

Answers to these problems are on the following page. Do not use a calculator.

1. Solving linear equations. Sample questions:

- (a) Find x: 31x + 24 = 365.
- (b) Find n: 7n 4 = 2n + 16.
- 2. Simplifying fractions containing algebraic expressions. Reduce the following fractions:

(a)
$$\frac{3x+6}{3}$$
.
(b) $\frac{n(n-1)}{n(n+1)(r-1)}$.

3. Addition and subtraction of quotients with different algebraic denominators. Write each of the following as a single fraction in simplest terms:

(a)
$$\frac{1}{mn} + \frac{1}{m(2n-2)}$$
.
(b) $\frac{r}{r-1} - \frac{r-1}{r}$.

4. Multiplication of polynomials and binomials. Expand each of the following:

(a)
$$(x+2)(x+3)$$
.
(b) $(x+y)(x^2+2xy+y^2)$.
(c) $(x-1)^4$. (Hint: $(x-1)^4 = (x-1)(x-1)^3$.)

Answers

1.

(a)
$$x = 11$$

(b) $n = 4$.

2.

(a)
$$x + 2$$
.
(b) $\frac{n-1}{(n+1)(r-1)}$ or $\frac{n-1}{nr+r-n-1}$.

3.

(a)
$$\frac{3n-2}{mn(2n-2)}$$
 or $\frac{3n-2}{2mn^2-2mn}$.
(b) $\frac{2r-1}{r(r-1)}$ or $\frac{2r-1}{r^2-r}$

4.

(a)
$$x^2 + 5x + 6$$
.
(b) $x^3 + 3x^2y + 3xy^2 + y^3$.
(c) $x^4 - 4x^3 + 6x^2 - 4x + 1$

 \bigodot 2007 AoPS Incorporated. All rights reserved.