

Are you ready for Beast Academy 3D?

Step 1. The student should try to answer every question without a calculator and without help.
Step 2. Check the student's answers using the solutions at the end of this document.
Step 3. The student should be given a second chance on problems that he or she answered incorrectly.

Solve for the variable in each equation below:

1.	$54 = 9 \times W$	2.	37+ <i>n</i> = 115			1 . <i>w</i> =
						2. <i>n</i> =
3.	Evaluate $w \times 10$	+6 for $w = 45$.				3
4.	Evaluate 300-2	$2 \times k$ for $k = 10$.				4
5.	Simplify $9+y-4$	+y+ 1 2-y.			5	
6.	Write an equation with the same meaning as the sentence below. 6. Then, solve for m .					
		Seven less th	an m is sixty-six.			<i>m</i> =
7.	When 35 is divided by 8, the quotient is a with remainder b . What number can be divided by 8 to get quotient b with remainder a ?					7
8.	What is the side length in inches of a regular hexagon that has a perimeter of 8 feet?					8
9.	What is the remainder when 24×19 is divided by 7?			?		9

10. Grogg arranges toothpicks to make hexagons as shown below. It takes 11 toothpicks to make 2 hexagons, 16 toothpicks to make 3 hexagons, and 21 toothpicks to make four hexagons. How many toothpicks will Grogg need to make 50 hexagons if he continues this pattern?

11. What will the time be 93 minutes *after* the time shown on the clock below?

13.

14.

15.

16. ____

10.

12. Fill in the empty white squares in the puzzle below so that each of the five equations in the puzzle is true.

54	<u>.</u>	3	=	
		×		<u>.</u>
30	••		=	
		=		=
45	÷	15	=	

- **13.** How many seconds are in two hours?
- **14.** How many inches are in five yards?
- **15.** The perimeter of a square is one meter. What is the length in centimeters of one side of the square?
- **16.** Dara has nine U. S. coins for a total of 68 cents. How many nickels does she have?

Solutions

- **1.** $9 \times 6 = 54$, so w = 6.
- 2. To solve the equation, we subtract 37 from both sides:

$$37+n=115$$

 $-37 - 37$
 $n = 78$

So, *n* = **78**.

- **3.** When w = 45, the expression $w \times 10+6$ is equal to $45 \times 10+6 = 450+6 = 456$.
- 4. When k = 10, the expression $300-2 \times k$ is equal to $300-2 \times 10 = 300-20 = 280$.
- **5.** We use the associative and commutative properties of addition to rewrite the expression:

$$9+y-4+y+12-y = (9+y)-4+(y+12)-y = (y+9)-4+(12+y)-y = y+(9-4+12)+y-y = y+17+y-y$$

Then, starting with y+17, adding y and subtracting y is the same as doing nothing. So, y+17+y-y=y+17.

9+y-4+y+12-y simplifies to y+17 (or 17+y).

6. "Seven less than *m*" means m-7 (*not* 7-m), and "is" means "equals." Therefore, our equation is m-7 = 66.

To solve the equation, we add 7 to both sides:

$$m-7 = 66$$

+7 +7
 $m = 73$

So, *m* = **73**.

7. First, we divide 35 by 8:

$$8) 35 \\ -32 \\ 3$$

л

 $35 \div 8$ has quotient 4 and remainder 3. So, a = 4 and b = 3. We are looking for a number that has quotient 3 and remainder 4 when divided by 8. This means that 8 goes into our number 3 times, with 4 left over.

8×3 is 24, plus 4 extra is 28.

So, 28 has quotient 3 and remainder 4 when divided by 8.

8. Since 1 foot is equal to 12 inches, 8 feet equals $8 \times 12 = 96$ inches.

A regular hexagon has 6 sides of equal length. So, to find the side length of the hexagon, we divide 96 by 6:

Since the remainder is 0, we can write $96 \div 6 = 10 + 6 = 16$.

So, the side length of a regular hexagon with a perimeter of 8 feet is $96 \div 6 = 16$ inches (in).

9. We first multiply 24×19, then divide by 7 to find the remainder.

$$24 \times 19 = 24 \times (20 - 1) = 480 - 24 = 456.$$

So, $24 \times 19 = 456$. Next, we divide 456 by 7:

So, 24×19÷7 has remainder 1.

We begin by finding the remainder when each number is divided by 7.

24÷7 has remainder 3.

19÷7 has remainder 5.

Then, we multiply the remainders.

 $(24 \times 19) \div 7$ has the same remainder as $(3 \times 5) \div 7$.

 $3 \times 5 = 15$, and $15 \div 7$ has remainder 1.

So, $(24 \times 19) \div 7$ has remainder **1**.

10. To make the first hexagon, Grogg needs 6 toothpicks. To make each additional hexagon, he must add 5 more toothpicks. So to make 50 hexagons, Grogg needs 6×1 toothpicks for the first and 5×49 toothpicks for the next 49. All together, he needs 6+(5×49) = 6+245 = 251 toothpicks.

_ or _

We could think of Grogg starting with 1 toothpick and adding 5 toothpicks for each hexagon. So, to make *n* hexagons, Grogg starts with 1 toothpick and adds $5 \times n$ more toothpicks for a total of $1+5 \times n$ toothpicks.

To make 50 hexagons, Grogg needs $1+(5\times50) = 1+250 = 251$ toothpicks.

Are you ready for Beast Academy 3D?

- The time shown on the clock is 6:47.
 13 minutes after 6:47 is 7:00.
 This leaves 93-13 = 80 minutes to add.
 60 minutes (1 hour) after 7:00 is 8:00.
 This leaves 80-60 = 20 minutes to add.
 20 minutes after 8:00 is 8:20.
 So, 93 minutes after 6:47 is 8:20.
- We start with the horizontal equation at the top: 54÷3.
 We use long division to compute 54÷3 = 18, so we have

54	÷	3	=	18
		×		÷
30	÷		=	
		=		=
45	÷	15	=	

Then, we solve the center vertical equation: $3 \times \boxed{=} 15$. Since $3 \times \boxed{5} = 15$, we have

54	÷	3	=	18
		×		÷
30	÷	5	=	
		=		=
45	÷	15	=	

Next, we solve the center horizontal equation: $30 \div 5$. Since $30 \div 5 = 6$, we have

54	÷	3	=	18
		×		÷
30	÷	5	=	6
		=		=
45	÷	15	=	

Then, we can use either the right vertical equation or the bottom horzontal equation to find the correct number to place in the final square.

 $18 \div 6 = 3$ and $45 \div 15 = 3$

So, we have

54	÷	3	=	18
		×		÷
30	÷	5	=	6
		=		=
45	÷	15	=	3

13. Since there are 60 seconds in 1 minute and 60 minutes in 1 hour, one hour equals $60 \times 60 = 3,600$ seconds.

So, two hours equal $3,600 \times 2 = 7,200$ seconds.

14. Since there are 3 feet in 1 yard, and 12 inches in 1 foot, one yard equals $3 \times 12 = 36$ inches.

So, 5 yards equal $5 \times 36 = 180$ inches (in).

15. One meter equals 100 centimeters, so the perimeter of the square is 100 centimeters. A square has 4 sides of equal length, so we calculate the side length by dividing the perimeter by 4:

 $100 \div 4 = 25.$

The side length of a square with a perimeter of 1 meter is **25 centimeters (cm)**.

16. Using nickels, dimes, and quarters, we can only get a number of cents that is a multiple of 5.

Dara has 9 coins worth 68 cents. Since 68 is not a multiple of 5, we know that Dara must have at least 3 pennies. That leaves 9-3=6 coins worth $68-3=65\phi$.

If all 6 of the remaining coins were only dimes, nickels or pennies, then the coins would be worth $10 \times 6 = 60$ cents or less. That's not enough!

So, Dara must have at least one quarter. That leaves 6-1=5 coins worth $65-25=40\phi$.

If Dara had a second quarter, that would leave 4 coins to make $40-25 = 15\phi$. We cannot make 15ϕ with 4 coins, so Dara only has one quarter.

If all 5 remaining coins were nickels, they would be worth only $5 \times 5 = 25 c$. So, we must have at least 1 dime.

We look for a way to make 40ϕ with 5 coins, all of which are dimes and nickels.

Dimes	Nickels	Total Value
1	4	10+20=30¢
2	3	20+15=35¢
3	2	30+10=40¢
4	1	40 + 5 = 45 c
5 0		50¢

We can only make 40¢ with 3 dimes and 2 nickels.

So, all together, Dara has 1 quarter, 3 dimes, 2 nickels, and 3 pennies for a total of 68¢.