

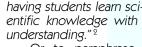
Scope & Sequence

A Reason For® Science

Published by The Concerned Group

A NEW PARADIGM

for children — young minds created by an infinite God with an unlimited knowledge base, assuming students capacity to think, to learn, to explore, will later attach meaning to memorized and to discover!


children really learn, A Reason For® that is presented this way because Science uses a different paradigm they never become engaged with the from traditional textbooks. Why? In an material. effort to address standards and accountability, many of today's science ence is based on the premise that direct conflict with the central goal of

A Reason For® Science is designed textbooks get learning backwards. They focus primarily on building a facts. The problem is that very few el-Because of its emphasis on how ementary students master information

By contrast, A Reason For[®] Sci-

learning science is an ACTIVE process. It is "something children do, not something done to them."1

According to the National Science Education Standards, "... active science learning means shifting emphasis away from teachers presenting information and covering science topics. The perceived need to include all the topics and information . . . is in

Or to paraphrase William Butler Yeats. "Great science teaching is not filling up a pail. It's lighting a fire!"

INQUIRY-BASED LEARNING

to teach basic Life, Earth, and Physical solving, and journaling. It also requires Science concepts through fun, handson activities. Its focus is to make learning both fun and meaningful.

selves are never enough. In order to guiry-based model. truly master a concept, students must This means actively engaging the ma-

A Reason For[®] Science is designed such as group discussion, problem thought-provoking questions that help develop higher-level cognitive skills. The weekly format of **A Reason For**® But hands-on activities by them- Science is designed to reflect this in-

According to the National Scihave "minds-on" experiences as well! ence Education Standards, "Inquiry ing skills."³ is central to science learning. When terial through a variety of methods engaging in inquiry, students describe understanding in different ways and

objects and events, ask questions, to different degrees, the flexible forconstruct explanations, test those ex- mat of A Reason For® Science also planations against current scientific encourages multiple learning styles knowledge, and communicate their and allows for individual differences. ideas to others ... In this way, students Each activity challenges students to actively develop their understanding develop their own unique skills, and of science by combining scientific encourages them to think of creative knowledge with reasoning and think- solutions.

Since different students achieve

NATIONAL STANDARDS

The "National Standards" referred to in the "K-4 Science Content Standards" (p.121 - 142) and "5-8 Science Content Standards" (p. 143 - 172).

Teacher Guidebooks include a list this Scope & Sequence are from the of the content standards that relate to dard C and sub-topic 1. (A detailed third grade lesson, for example, would National Science Education Stan- each individual lesson. References are dards¹. More specifically, they reflect based on the NSES alphabetic format, plus a numeric code to indicate the the Standards.) bulleted sub-topic.

For example, C1 in a fourth grade upper grade standards are found in function of living systems").

lesson, would indicate Content Stan- different sections. A C1 reference for a description of the C1 content stan- be found on page 127 (characteristics dard is found on pages 127 - 229 of of organisms). By contrast, a C1 reference for a seventh grade lesson would As noted above, lower grade and be found on page 155 ("structure and

¹ National Science Education Standards, 1999. Washington, D.C.: National Academy Press. (p. 2); ² Ibid. (p. 20); ³ Ibid. (p. 2)

Level F (Grade 6)

Lesson	Category	Topic/Focus	Objective	National Standards
1	Life Science	Seed Structure	To explore the structure and purpose of seeds	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
2	Life Science	Seed Dispersal	To explore how seeds are scattered around	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
3	Life Science	Chlorophyll	To explore the chemical responsible for photosynthesis	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
4	Life Science	Decomposition	To explore how organisms decompose after death	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
5	Life Science	Preservatives	To explore how preservatives affect decomposition	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
6	Life Science	Classification	To explore grouping objects by characteristics	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
7	Life Science	Camouflage	To explore how color affects survival of prey animals	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
8	Life Science	Eye Dominance	To explore brain function through eye dominance	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
9	Life Science	Eye Structure	To explore similarities between the eye and a camera	A1, A2, B1, B2, B3, C1, C3, D1, E3, F1, F4, G1
10	Physical Science (Forces)	Half Life	To explore how radioactive elements break down	A1, A2, B1, B2, B3, E1, E2, F3, F4, F5, G1, G2
11	Physical Science (Forces)	Cohesion	To explore how elements are held together	A1, A2, B1, B2, B3, G1, G2
12	Physical Science (Forces)	Stress	To explore how stress affects materials	A1, A2, B1, B2, B3, G1, G2
13	Physical Science (Forces)	Gravity	To explore how gravity affects objects	A1, A2, B1, B2, B3, G1, G2
14	Physical Science (Forces)	Momentum	To explore how forces are transferred	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
15	Physical Science (Forces)	Torque	To explore center of gravity and torque	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
16	Physical Science (Forces)	Buoyancy	To explore why some objects float	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
17	Physical Science (Forces)	Compression	To explore compression and how force is transferred	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
18	Physical Science (Forces)	Machines	To explore how machines multiply force and change its direction	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
19	Earth Science	Air Pressure	To explore air pressure	A1, A2, B1, B2, B3, D1, G1, G2
20	Earth Science	Air Pressure	To explore changes in air pressure	A1, A2, B1, B2, B3, D1, G1, G2
21	Earth Science	Weather	To explore an important weather instrument	A1, A2, B1, B2, B3, D1, E1, E2, F5, G1, G2
22	Earth Science	Geology	To explore properties of igneous rock	A1, A2, B1, B2, D1, G1, G2
23	Earth Science	Chemical Weathering	To explore a unique form of erosion	A1, A2, B1, D1, G1, G2
24	Earth Science	Groundwater	To explore how water is filtered underground	A1, A2, B1, B2, B3, D1, F1, F2, F3, F4, G1, G2
25	Earth Science	Glaciers	To explore how glaciers are formed	A1, A2, B1, B3, D1, D2, G1, G2
26	Earth Science	Planets	To make a model of a planet	A1, A2, B1, B2, D1, G1, G2
27	Earth Science	Earth Structure	To explore Earth's layers	A1, A2, B1, D1, D3, G1, G2
28	Physical Science (Energy/Matter)	Light	To explore light waves and color	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
29	Physical Science (Energy/Matter)	Lenses	To explore how a lens bends light	A1, A2, B1, B3, E1, E2, F5, G1, G2
30	Physical Science (Energy/Matter)	Sound	To explore how sound is made	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
31	Physical Science (Energy/Matter)	Magnetism	To explore magnets and magnetic fields	A1, A2, B1, B2, D1, E1, E2, F5, G1, G2
32	Physical Science (Energy/Matter)	Static Electricity	To explore some properties of electricity	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
33	Physical Science (Energy/Matter)	Thermodynamics	To explore a physical change	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
34	Physical Science (Energy/Matter)	Chemical Change	To explore a chemical change using a hand warmer	A1, A2, B1, B2, B3, E1, E2, F5, G1, G2
35	Physical Science (Energy/Matter)	Corrosion	To explore the speed of chemical reactions	A1, A2, B1, B3, G1, G2
36	Physical Science (Energy/Matter)	Indicators	To explore how indicators show changes	A1, A2, B1, G1, G2

2008 A Reason For Science® / The Concerned Group