

2015 Science Supply List Chemistry

Table of Contents

UNIT 1: MEASUREMENT AND ANALYSIS	1
UNIT 2: STARTING THE INVESTIGATION: HOW TO IDENTIFY ELEMENTS, COMPOUNDS, AND MIXTURES	2
UNIT 3: EXPLORING LAWS FOR GASES AND CONSERVATION OF MASS	3
UNIT 4: THE DISCOVERY OF ATOMS: NATURE'S BUILDING BLOCKS	4
UNIT 5: MOLECULAR STRUCTURE	4
UNIT 7: CHEMICAL REACTIONS, RATES AND EQUILIBRIUM	5
UNIT 8: EQUILIBRIUM SYSTEMS	7
UNIT 9: CARBON CHEMISTRY: HYDROCARBONS	7
UNIT 10: CARBON CHEMISTRY: FUNCTIONAL GROUPS	8
UNIT 11: CHEMISTRY REVIEW	8

UNIT 1: MEASUREMENT AND ANALYSIS

Assignment Title	Project Summary	Video Demo	Materials Needed		
*Report: Metric System	In this report, you will research and describe the history of measurement and its impact on the advancement of science and societies	No	۰	research resources	
*Project: Measuring Length with Precision	In this project, you will demonstrate proficiency in using a metric ruler to make precise measurements	No	۰	metric ruler	
Experiment: Masses	In this experiment, you will demonstrate proficiency in using a centigram balance to make precise measurements	Yes	•	centigram balance • various small objects	
*Project: Tutorial For Making A Scatter Plot Using An Electronic Spreadsheet Program	In this project, you will be designing a scatter plot (a type of line graph) based on information given to you in a data table.	No	•	Microsoft [©] Excel [©]	
*Special Project	Special Project assignments are used by teachers to create their own projects if needed.	No		N/A	

Assignment Title	Project Summary	Video Demo	Materials Needed
Experiment: Observation of a Phase Change	In this experiment, you will Identify differences in energy content of various phases and how these can be visually demonstrated, interpret graphs produced from data collected during the phase change process, and communicate conclusion.	Yes	 test tube with 12-15 grams paradichlorobenzene (PDCB) (moth crystals) (Not suggested if you do not have access to a fume hood or good ventilation system to perform. Paraffin wax may then be used in place of PDCB.) text tube with 12 - 15 grams of paraffin wax. (substitute for PDCB) text tube with 12 - 15 grams of paraffin wax. (substitute for PDCB) test tube with 12 - 15 grams of paraffin wax. (substitute for PDCB) test tube with 12 - 15 grams of paraffin wax. (substitute for PDCB)
*Experiment: Sand And Salt	In this activity you will make a mixture of salt and sand and then devise a way to separate them into the original sample of pure salt and pure sand.	No	 In this activity you will make a mixture of salt and sand and then devise a way to separate them into the original sample of pure salt and pure sand. filter funnel filter paper or heavy paper hand towel
*Report: Density	In this report, you will test an object that you think might contain one of the materials you tested.	No	 aluminum foil (crumpled or in a ball) copper wire iron nails three pure solids or g/cm3.
Experiment: Using The Tyndall Effect To Identify Colloids	In this experiment, you will Differentiate between a solution and a colloid based on the Tyndall Effect, clearly state the basis for the Tyndall Effect and communicate findings	No	 3 clear glasses with smooth sides laser pointer or flashlight red Jell-O red food coloring sugar water
*Special Project	Special Project assignments are used by teachers to create their own projects if needed.	No	N/A

UNIT 2: STARTING THE INVESTIGATION: HOW TO IDENTIFY ELEMENTS, COMPOUNDS, AND MIXTURES

Assignment Title	Project Summary	Video Demo	Materials Needed
*Project: Graphing Kinetic Energy	Apply the principles of Kinetic Molecular Theory to graphs of molecular motion	No	N/A
Experiment: Finding Absolute Zero Experimentally	In this experiment, you will predict how the volume of a gas will change with the temperature is raised or lowered, calculate what the change in volume of a gas should be when the temperature is changed, visualize the relationship between the temperature and volume of a gas, make and use graphs to predict the volume of gas at different temperatures and communicate findings	Yes	 250 mL Erlenmeyer flask wire gauze short piece of plastic tube rubber stop, 1-hole to fit flask water beaker to fit flask ice burner or hot plate ring stand ring thermometer
*Experiment: Charle's Law and a Metal Can	In this experiment, you will describe experimental outcomes in terms of established laws	No	 a gallon metal can with a lid a Bunsen burne cold water
*Project: Absolute Zero: Real Or Theoretical?	Will a real gas ever reach absolute zero? Will an ideal gas ever reach absolute zero? Why or why not? Compose a report in your REPORT document on these two questions.	No	research resources
*Essay: Biography	In this essay, you will research and describe the important contributions of investigators to the science of chemistry	No	research resources
*Project: Examining the Use of Certain Gases as Propellants	In this project, you will Describe the sources and properties of specific gases important to ozone depletion reactions and understand the interaction of energy (sunlight) and matter (chemicals) in the stratosphere of Earth	No	research resources
*Special Project	Special Project assignments are used by teachers to create their own projects if needed.	No	N/A

UNIT 3: EXPLORING LAWS FOR GASES AND CONSERVATION OF MASS

Assignment Title	Project Summary	Video Demo	Materials Needed
*Experiment: Physical Properties Of Elements	In this experiment, you will be exploring some of the physical properties of some common elements.	Yes	Suggested materials: iron nails, aluminum foil, copper wire, magnesium ribbon, or lead fishing sinkers.
* Experiment: Chemical Properties of Some Metals	In this experiment you will test certain metals for their ability to burn.	No	 tin can lid with 4 indentations support stand and ring Bunsen burner or propane burner samples of iron, copper, magnesium, and lead
*Report: Fission Reactors	In this report, you will prepare a 500 word report on fission reactors in use today.	No	research resources
*Special Project	Special Project assignments are used by teachers to create their own projects if needed.	No	N/A •

UNIT 4: THE DISCOVERY OF ATOMS: NATURE'S BUILDING BLOCKS

*indicates alternate project/experiments

UNIT 5: MOLECULAR STRUCTURE

Assignment Title	Project Summary	Video Demo	Materials Needed
Experiment: Demonstrating Polar Properties	Some substance are polar and some are not. It is not so difficult to demonstrate a difference between these two classes of materials. This experiment is designed to help reveal the properties of polar and nonpolar substances.	No	 acetate (overhead transparency material) strip tissue paper vinyl strip woolen cloth water from a faucet
*Special Project	Special Project assignments are used by teachers to create their own projects if needed.	No	N/A

Assignment Title	Project Summary	Video Demo	Materials Needed
Experiment: Observing Chemical Changes	In this experiment, you will conceptualize various indicators for chemical change	Yes	 0.01 M NaCl solution - To make the salt solution, pour 0.58 g of table salt in 1 liter of distilled water and stir to dissolve. 0.01 M AgNO₃ solution - To make the silver nitrate solution pour 1.7 g of /L of AgNO₃ into 1 liter of distilled water and stir to dissolve. The solution can also be purchased at a local drug or photo supply store several small test tubes several eye droppers, one for each solution
* Experiment: Chemical Reactions	In this experiment, you will see what happens when reactants are combined.	Yes	 0.01 M acidified iron (II) sulfate, FeSO₄ - 1.52 g/liter of solution and 1 mL concentrated HCl; solid FeSO₄ can be purchased at drug or hobby store. WEAR GOGGLES WHEN HANDLING CONCENTRATED HCI AND WORK IN A WELL VENTILATED AREA. 0.01 M NaCl solution - 0.58g/liter of solution; table salt 0.01 M ammonium nitrate, NH₄NO₃ - 0.80 g/liter of solution; solid ammonium nitrate can be purchased at drug or fertilizer store several test tubes or baby-food jars several medicine (eye) droppers graduated cylinders or marked disposable pipettes

UNIT 7: CHEMICAL REACTIONS, RATES AND EQUILIBRIUM

Assignment Title	Project Summary	Video Demo	Materials Needed
*Experiment: Ammonium Nitrate	After completing this experiment you will answer some questions.	No	 solid sodium hydroxide, NaOH - lye, can be purchased in grocery store solid ammonium nitrate, NH₄NO₃, can be purchased from a drug or fertilizer store phenolphthalein solution (or other indicator) - can be purchased from a hobby shop concentrated hydrochloric acid, HCI thermometer to fit test tubes forceps (tweezers) water test tubes with stoppers. graduated cylinders or marked disposable pipettes
Experiment: Effect of Solution Concentration on Reaction Rate	In this experiment, you will observe how a trend in solution concentration for a specific solution affects reaction rate and communicate findings.	No	 chalk crumbs or dust 0.1 M HCl - see previous experiment. clean test tubes (5) metric balance weighing paper
*Special Project	Special Project assignments are used by teachers to create their own projects if needed.	No	N/A

UNIT 7: CHEMICAL REACTIONS, RATES AND EQUILIBRIUM (CONTINUED)

UNIT 8: EQUILIBRIUM SYSTEMS

Assignment Title	Project Summary	Video Demo	Materials Needed
Experiment: Solubility Trends	In this experiment, you will form a testable hypothesis; collect, analyze and display results of investigative procedures; draw conclusions from experimental data concerning solubility trends; and communicate findings.	Yes	 rock salt (water softener crystals) glycerin water 2 baby-food jars with lids rubbing alcohol (isopropyl alcohol) stirring rod test tubes
*Experiment: Acid Strength	In this experiment, you will form a testable hypothesis for what happens when HCI and marble interact based on a chemical reaction; determine how acid strength affects the speed and strength of the reaction; collect, analyze and display results of investigative procedures; and communicate findings.	Yes	 distilled water 0.1 M HCI (8.3 mL concentrated HCI per 1 L of solution) 0.001 M HCI (1 mL 0.1 M HCI per 100 mL of solution) 0.00001 M HCI (1 mL 0.001 M HCI per 100 mL of solution) marble, limestone, or chalk chips pipette (glass with suction bulb or disposable) 4 test tubes goggles
*Special Project	Special Project assignments are used by teachers to create their own projects if needed.	No	N/A •

*indicates alternate project/experiments

UNIT 9: CARBON CHEMISTRY: HYDROCARBONS

Assignment Title	Project Summary	Video Demo		Mater Need	Materials Needed		
*Experiment: Volatility	In this investigation, we will study the volatility of a number of organic compounds	No	 ac in do is 	cetone - Available the paint epartment of stores sopropyl alcohol -	•	4 test tubes or other equal size glass containers grease marker or	
			9 3 9 3 3 51 • m • w	vailable at drug tores hineral oil	•	masking tape ruler goggles	
*Special Project	Special Project assignments are used by teachers to create their own projects if needed	No	N/A		٠		

UNIT 10: CARBON CHEMISTRY: FUNCTIONAL GROUPS

Assignment Title	Project Summary	Video Demo	Mat Ne	erials eded
Experiment: Preparation of a Polymer	In this experiment, you will take polyvinyl alcohol and add Sodium borate (borax) to make the polyvinyl alcohol polymerize.	No	 3 small beakers stirring rod polyvinyl alcohol	 borax food coloring (optional)
*Special Project	Special Project assignments are used by teachers to create their own projects if needed	No	N/A	•

*indicates alternate project/experiments

UNIT 11: CHEMISTRY REVIEW

Assignment Title	Project Summary	Video Demo		Materials Needed	
*Special Project	Special Project assignments are used by teachers to create their own projects if needed	No	N/A		