Solutions Manual to Accompany

Accelerated Studies in Physics and Chemistry

second edition

Rebekah L. Mays and John D. Mays

Austin, Texas 2018

© 2015, 2018 Novare Science & Math LLC

All rights reserved. Except as noted below, no part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by information storage and retrieval systems, without the written permission of the publisher, except by a reviewer who may quote brief passages in a review.

Published by

Novare Science & Math novarescienceandmath.com

Printed in the United States of America Second printing, August 2019 ISBN: 978-0-9989833-9-4

Novare Science & Math is an imprint of Novare Science & Math LLC.

For the complete catalog of textbooks and resources available from Novare Science & Math, visit novarescienceandmath.com.

Contents

Acknowledgement	iii
Preface	iv
Chapter 2	1
Chapter 3	9
Chapter 4	16
Chapter 5	41
Chapter 6	68
Chapter 7	71
Chapter 8	80
Chapter 10	91
Chapter 11	92
Chapter 13	102

Chapter 2

Unit Conversions

1.
1750 m.
$$\frac{100 \text{ cm}}{1 \text{ m}} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} \cdot \frac{1 \text{ ft}}{12 \text{ in}} = 5740 \text{ ft}$$

2.
3.54 g. $\frac{1 \text{ kg}}{1000 \text{ g}} = 0.00354 \text{ kg}$
3.
41.11 mL $\cdot \frac{1 \text{ L}}{1000 \text{ mL}} = 0.04111 \text{ L}$
4.
7×10⁸ m. $\frac{100 \text{ cm}}{1 \text{ m}} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} \cdot \frac{1 \text{ ft}}{12 \text{ in}} \cdot \frac{1 \text{ mi}}{5280 \text{ ft}} = 4 \times 10^5 \text{ mi}$
5.
1.5499×10⁻¹² mm. $\frac{1 \text{ m}}{1000 \text{ mm}} = 1.5499 \times 10^{-15} \text{ m}$
6.
750 cm³ $\cdot \frac{1 \text{ mL}}{1 \text{ cm}^3} \cdot \frac{1 \text{ L}}{1000 \text{ mL}} \cdot \frac{1 \text{ m}^3}{1000 \text{ L}} = 7.5 \times 10^{-4} \text{ m}^3$
7.
2.9979×10⁸ m. $\frac{100 \text{ cm}}{1 \text{ m}} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} \cdot \frac{1 \text{ ft}}{12 \text{ in}} = 9.8356 \times 10^8 \frac{\text{ft}}{\text{s}}$
8.
168 hr. $\frac{60 \text{ min}}{1 \text{ hr}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 605,000 \text{ s}$
9.
5570 $\frac{\text{kg}}{\text{m}^3} \cdot \frac{1000 \text{ g}}{1 \text{ kg}} \cdot \frac{1 \text{ m}^3}{1000 \text{ L}} \cdot \frac{1 \text{ L}}{1000 \text{ mL}} \cdot \frac{1 \text{ mL}}{1 \text{ cm}^3} = 5.57 \frac{\text{g}}{\text{ cm}^3}$

10.
$45 \frac{\text{gal}}{\text{s}} \cdot \frac{3.786 \text{ L}}{1 \text{ gal}} \cdot \frac{1 \text{ m}^3}{1000 \text{ L}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 1.0 \times 10^1 \frac{\text{m}^3}{\text{min}}$
11.
$600,000 \ \frac{\text{ft}^3}{\text{s}} \cdot \frac{(0.3048 \text{ m})^3}{1 \text{ ft}^3} \cdot \frac{1000 \text{ L}}{1 \text{ m}^3} \cdot \frac{60 \text{ s}}{1 \text{ min}} \cdot \frac{60 \text{ min}}{1 \text{ hr}} = 6 \times 10^{10} \ \frac{\text{L}}{\text{hr}}$
12.
5200 mL $\cdot \frac{1 \text{ L}}{1000 \text{ mL}} \cdot \frac{1 \text{ m}^3}{1000 \text{ L}} = 5.2 \times 10^{-3} \text{ m}^3$
13.
$5.65 \times 10^{2} \text{ mm}^{2} \cdot \frac{1 \text{ cm}}{10 \text{ mm}} \cdot \frac{1 \text{ cm}}{10 \text{ mm}} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} = 0.876 \text{ in}^{2}$
14.
$32.16 \ \frac{\text{ft}}{\text{s}^2} \cdot \frac{12 \text{ in}}{1 \text{ ft}} \cdot \frac{2.54 \text{ cm}}{1 \text{ in}} \cdot \frac{1 \text{ m}}{100 \text{ cm}} = 9.802 \ \frac{\text{m}}{\text{s}^2}$
15.
5.001 $\frac{\mu g}{s} \cdot \frac{1 g}{10^6 \mu g} \cdot \frac{1 kg}{1000 g} \cdot \frac{60 s}{1 \min} = 3.001 \times 10^{-4} \frac{kg}{\min}$
16.
$4.771 \frac{g}{mL} \cdot \frac{1 \text{ kg}}{1000 \text{ g}} \cdot \frac{1000 \text{ mL}}{1 \text{ L}} \cdot \frac{1000 \text{ L}}{1 \text{ m}^3} = 4771 \frac{\text{ kg}}{\text{m}^3}$
17.
$13.6 \ \frac{g}{cm^3} \cdot \frac{1000 \ mg}{1 \ g} \cdot \frac{100 \ cm}{1 \ m} \cdot \frac{100 \ cm}{1 \ m} \cdot \frac{100 \ cm}{1 \ m} = 1.36 \times 10^{10} \ \frac{mg}{m^3}$
18.
93,000,000 mi $\cdot \frac{5280 \text{ ft}}{1 \text{ mi}} \cdot \frac{0.3048 \text{ m}}{1 \text{ ft}} \cdot \frac{100 \text{ cm}}{1 \text{ m}} = 1.5 \times 10^{13} \text{ cm}$
19.
$65 \frac{\text{mi}}{\text{hr}} \cdot \frac{5280 \text{ ft}}{1 \text{ mi}} \cdot \frac{0.3048 \text{ m}}{1 \text{ ft}} \cdot \frac{1 \text{ hr}}{60 \text{ min}} \cdot \frac{1 \text{ min}}{60 \text{ s}} = 29 \frac{\text{m}}{\text{s}}$

$$633 \text{ nm} \cdot \frac{1 \text{ m}}{1 \times 10^{9} \text{ nm}} \cdot \frac{100 \text{ cm}}{1 \text{ m}} \cdot \frac{1 \text{ in}}{2.54 \text{ cm}} = 2.49 \times 10^{-5} \text{ in}$$
21.

$$0.05015 \cdot 3.00 \times 10^{8} \frac{\text{m}}{\text{s}} \cdot \frac{60 \text{ s}}{1 \text{ min}} \cdot \frac{60 \text{ min}}{1 \text{ hr}} \cdot \frac{1 \text{ ft}}{0.3048 \text{ m}} \cdot \frac{1 \text{ mi}}{5280 \text{ ft}} = 3.37 \times 10^{7} \frac{\text{mi}}{\text{ hr}}$$
22.

$$T_{F} = 98.6^{\circ}\text{F}$$

$$T_{C} = ?$$

$$T_{C} = \frac{5}{9}(T_{F} - 32) = \frac{5}{9}(98.6^{\circ}\text{F} - 32) = 37.0^{\circ}\text{C}$$
23.

$$T_{C} = 50.0^{\circ}\text{C}$$

$$T_{F} = ?$$

$$T_{C} = \frac{5}{9}(T_{F} - 32)$$

$$T_{F} = \frac{9}{5}T_{C} + 32 = \frac{9}{5}(50.0^{\circ}\text{C}) + 32 = 122^{\circ}\text{F}$$
24.

$$t = 1 \text{ yr} \cdot \frac{365 \text{ days}}{1 \text{ year}} \cdot \frac{24 \text{ hr}}{1 \text{ day}} \cdot \frac{60 \text{ min}}{1 \text{ hr}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 31,540,000 \text{ s}$$

$$v = c = 3.00 \times 10^{8} \frac{\text{m}}{\text{s}}$$

$$d = ?$$

$$v = \frac{d}{t}$$

$$d = 3.00 \times 10^{8} \frac{\text{m}}{\text{s}} \cdot 31,540,000 \text{ s} = 9.46 \times 10^{15} \text{ m} \text{ (this is one lt-yr expressed in m.)}$$

4.3 lt-yr = $4.3 \cdot 9.46 \times 10^{15}$ m = 4.07×10^{16} m $\cdot \frac{1 \text{ km}}{1000 \text{ m}} = 4.1 \times 10^{13}$ km

Motion Study Questions Set 1
1.
$d = 25.1 \text{ mi} \cdot \frac{5280 \text{ ft}}{1 \text{ mi}} \cdot \frac{0.3048 \text{ m}}{1 \text{ ft}} = 4.04 \times 10^4 \text{ m}$
$t = 0.50 \text{ hr} \cdot \frac{60 \text{ min}}{1 \text{ hr}} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 1800 \text{ s}$
$\nu = ?$
$v = \frac{d}{t} = \frac{4.04 \times 10^4 \text{ m}}{1800 \text{ s}} = 22 \frac{\text{m}}{\text{s}}$
2.
$22 \frac{\mathrm{m}}{\mathrm{s}} \cdot \frac{1 \mathrm{km}}{1000 \mathrm{m}} \cdot \frac{60 \mathrm{s}}{1 \mathrm{min}} \cdot \frac{60 \mathrm{min}}{1 \mathrm{hr}} = 79 \frac{\mathrm{km}}{\mathrm{hr}}$
3.
$t = 4.25 \text{ hr} \cdot \frac{3600 \text{ s}}{\text{hr}} = 15,300 \text{ s}$
$v = 5.0000 \frac{\text{km}}{\text{hr}} \cdot \frac{1000 \text{ m}}{\text{km}} \cdot \frac{1 \text{ hr}}{3600 \text{ s}} = 1.389 \frac{\text{m}}{\text{s}}$
<i>d</i> = ?
$v = \frac{d}{t}$
d = vt
$d = 1.389 \frac{\text{m}}{\text{s}} \cdot 15,300 \text{ s} = 21,300 \text{ m} \cdot \frac{1 \text{ km}}{1000 \text{ m}} = 21.3 \text{ km}$
4.
21.3 km $\cdot \frac{1000 \text{ m}}{1 \text{ km}} \cdot \frac{1 \text{ ft}}{0.3048 \text{ m}} \cdot \frac{1 \text{ mi}}{5,280 \text{ ft}} = 13.2 \text{ mi}$
5.
$150.0 \ \frac{\text{mi}}{\text{hr}} \cdot \frac{5280 \text{ ft}}{1 \text{ mi}} \cdot \frac{0.3048 \text{ m}}{1 \text{ ft}} \cdot \frac{1 \text{ km}}{1000 \text{ m}} = 241.4 \ \frac{\text{km}}{\text{hr}}$

6.

$$v = 150.0 \frac{\text{mi}}{\text{hr}} \cdot \frac{1609 \text{ m}}{\text{mi}} \cdot \frac{1 \text{ hr}}{3600 \text{ s}} = 67.04 \frac{\text{m}}{\text{s}}$$

$$d = 10.0 \text{ mi} \cdot \frac{1609 \text{ m}}{\text{mi}} = 16,090 \text{ m}$$

$$t = ?$$

$$v = \frac{d}{t}$$

$$t = \frac{d}{v} = \frac{16,090 \text{ m}}{67.04 \frac{\text{m}}{\text{s}}} = 240.0 \text{ s} \cdot \frac{1 \text{ min}}{60 \text{ s}} = 4.00 \text{ min}$$

_

$$d = 3.0 \text{ km} \cdot \frac{1000 \text{ m}}{1 \text{ km}} = 3.0 \times 10^3 \text{ m}$$

$$t = 1 \text{ hr } 20.0 \text{ min} = 80.0 \text{ min} \cdot \frac{60 \text{ s}}{1 \text{ min}} = 4.80 \times 10^3 \text{ s}$$

$$v = ?$$

$$v = \frac{d}{t} = \frac{3.0 \times 10^3 \text{ m}}{4.80 \times 10^3 \text{ s}} = 0.63 \frac{\text{m}}{\text{s}}$$

8.

$$v_i = 0$$

$$v_f = 45 \frac{\text{mi}}{\text{hr}} \cdot \frac{1 \text{ hr}}{60 \text{ min}} \cdot \frac{1 \text{ min}}{60 \text{ s}} \cdot \frac{5,280 \text{ ft}}{1 \text{ mi}} \cdot \frac{0.3048 \text{ m}}{1 \text{ ft}} = 20.1 \frac{\text{m}}{\text{s}}$$

$$t = 36 \text{ s}$$

$$a = ?$$

$$a = \frac{v_f - v_i}{t} = \frac{20.1 \frac{\text{m}}{\text{s}} - 0}{36 \text{ s}} = 0.56 \frac{\text{m}}{\text{s}^2}$$

2.
$v_i = 31 \frac{\mathrm{m}}{\mathrm{s}}$
t = 17 s
$v_f = 22 \frac{\mathrm{m}}{\mathrm{s}}$
<i>a</i> = ?
$a = \frac{v_f - v_i}{t} = \frac{22 \frac{m}{s} - 31 \frac{m}{s}}{17 s} = -0.53 \frac{m}{s^2}$
10.
d = 14.5 m
$v = c = 3.00 \times 10^8 \ \frac{\mathrm{m}}{\mathrm{s}}$
t = ?
$v = \frac{d}{t}$
$t = \frac{d}{v} = \frac{14.5 \text{ m}}{3.00 \times 10^8 \frac{\text{m}}{\text{s}}} = 4.83 \times 10^{-8} \text{ s} \cdot \frac{1 \times 10^9 \text{ ns}}{\text{s}} = 48.3 \text{ ns}$
11.
$v_i = 0$
$v_f = 0.80 \cdot 3.00 \times 10^8 \frac{\text{m}}{\text{s}} = 2.40 \times 10^8 \frac{\text{m}}{\text{s}}$
$t = 18 \text{ hr } 6 \min 45 \text{ s} = 64,800 \text{ s} + 360 \text{ s} + 45 \text{ s} = 65,205 \text{ s}$
<i>a</i> = ?
$a = \frac{v_f - v_i}{t} = \frac{2.40 \times 10^8 \ \frac{\text{m}}{\text{s}} - 0}{65,205 \ \text{s}} = 3680 \ \frac{\text{m}}{\text{s}^2}$

12.

$$d = 8.96 \times 10^{9} \text{ km} \cdot \frac{1000 \text{ m}}{1 \text{ km}} = 8.96 \times 10^{12} \text{ m}$$

$$v = 3.45 \times 10^{5} \frac{\text{m}}{\text{s}}$$

$$t = ?$$

$$v = \frac{d}{t}$$

$$t = \frac{d}{v} = \frac{8.96 \times 10^{12} \text{ m}}{3.45 \times 10^{5} \frac{\text{m}}{\text{s}}} = 2.597 \times 10^{7} \text{ s} \cdot \frac{1 \text{ hr}}{3600 \text{ s}} \cdot \frac{1 \text{ day}}{24 \text{ hr}} = 301 \text{ days}$$

$$a = 5.556 \times 10^{6} \frac{\text{cm}}{\text{s}^{2}} \cdot \frac{1 \text{ m}}{100 \text{ cm}} = 5.556 \times 10^{4} \frac{\text{m}}{\text{s}^{2}}$$

$$t = 45 \text{ ms} \cdot \frac{1 \text{ s}}{1000 \text{ ms}} = 4.5 \times 10^{-2} \text{ s}$$

$$v_{i} = 0$$

$$v_{f} = ?$$

$$a = \frac{v_{f} - v_{i}}{t}$$

$$v_{f} = at + v_{i} = (5.556 \times 10^{4} \frac{\text{m}}{\text{s}^{2}})(4.5 \times 10^{-2} \text{ s}) + (0 \frac{\text{m}}{\text{s}}) = 2.5 \times 10^{3} \frac{\text{m}}{\text{s}}$$

$$v_{i} = 4.005 \times 10^{3} \frac{\text{m}}{\text{s}}$$

$$a = 23.1 \frac{\text{m}}{\text{s}^{2}}$$

$$t = 13.5 \text{ s}$$

$$v_{f} = ?$$

$$a = \frac{v_{f} - v_{i}}{t}$$

$$v_{f} = at + v_{i} = (23.1 \frac{\text{m}}{\text{s}^{2}} \cdot 13.5 \text{ s}) + 4.005 \times 10^{3} \frac{\text{m}}{\text{s}} = 4.32 \times 10^{3} \frac{\text{m}}{\text{s}}$$

$$v = c = 2.9979 \times 10^8 \frac{\text{m}}{\text{s}}$$

$$d = 1.4965 \times 10^8 \text{ km} \cdot \frac{1000 \text{ m}}{1 \text{ km}} = 1.4965 \times 10^{11} \text{ m}$$

$$t = ?$$

$$v = \frac{d}{t}$$

$$t = \frac{d}{v} = \frac{1.4965 \times 10^{11} \text{ m}}{2.9979 \times 10^8 \frac{\text{m}}{\text{s}}} = 499.18 \text{ s} \cdot \frac{1 \text{ min}}{60 \text{ s}} = 8.3197 \text{ min}$$

Chapter 3

Newton's Second Law Practice Problems

1. *m* = 1880 kg $a=1.50 \frac{\mathrm{m}}{\mathrm{s}^2}$ F = ? $a = \frac{F}{m}$ $F = ma = 1880 \text{ kg} \cdot 1.50 \frac{\text{m}}{\text{s}^2} = 2820 \text{ N}$ 2. $m = 188.4 \text{ g} \cdot \frac{1 \text{ kg}}{1000 \text{ g}} = 0.1884 \text{ kg}$ $g = 9.80 \frac{m}{s^2}$ $F_w = ?$ $F_w = 0.1884 \text{ kg} \cdot 9.80 \frac{\text{m}}{\text{s}^2} = 1.85 \text{ N}$ 3. F = 250.0 N $m = 144,000 \text{ mg} \cdot \frac{1 \text{ g}}{1000 \text{ mg}} \cdot \frac{1 \text{ kg}}{1000 \text{ g}} = 0.144 \text{ kg}$ a = ? $a = \frac{F}{m} = \frac{250.0 \text{ N}}{0.144 \text{ kg}} = 1740 \frac{\text{m}}{\text{s}^2}$

4.

$$a = 2.3 \frac{\text{m}}{\text{s}^2}$$

 $F = 230,000 \text{ N}$
 $m = ?$
 $a = \frac{F}{m}$
 $m = \frac{F}{a} = \frac{230,000 \text{ N}}{2.3 \frac{\text{m}}{\text{s}^2}} = 1.0 \times 10^5 \text{ kg}$

$$a = 0.0022 \frac{\text{mi}}{\text{hr}^2} \cdot \frac{5280 \text{ ft}}{1 \text{ mi}} \cdot \frac{0.3048 \text{ m}}{1 \text{ ft}} \cdot \frac{1 \text{ hr}}{3600 \text{ s}} \cdot \frac{1 \text{ hr}}{3600 \text{ s}} = 2.732 \times 10^{-7} \frac{\text{m}}{\text{s}^2}$$

$$m = 2.2 \text{ Mg} \cdot \frac{1 \times 10^6 \text{ g}}{1 \text{ Mg}} \cdot \frac{1 \text{ kg}}{1000 \text{ g}} = 2.2 \times 10^3 \text{ kg}$$

$$F = ?$$

$$a = \frac{F}{m}$$

$$F = ma = 2.2 \times 10^3 \text{ kg} \cdot 2.732 \times 10^{-7} \frac{\text{m}}{\text{s}^2} = 6.0 \times 10^{-4} \text{ N}$$
6.

$$F_{w} = 125.1 \text{ lb} \cdot \frac{4.45 \text{ N}}{1 \text{ lb}} = 556.7 \text{ N}$$

$$g = 9.80 \frac{\text{m}}{\text{s}^{2}}$$

$$m = ?$$

$$F_{w} = mg$$

$$m = \frac{F_{w}}{g} = \frac{556.7 \text{ N}}{9.80 \frac{\text{m}}{\text{s}^{2}}} = 56.8 \text{ kg}$$