Solutions Manual to Accompany

Accelerated Studies in Physics and Chemistry

second edition

Rebekah L. Mays and John D. Mays

Austin, Texas

All rights reserved. Except as noted below, no part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by information storage and retrieval systems, without the written permission of the publisher, except by a reviewer who may quote brief passages in a review.

Published by
Novare Science \& Math
novarescienceandmath.com

人
 NOVARE

Printed in the United States of America
Second printing, August 2019
ISBN: 978-0-9989833-9-4
Novare Science \& Math is an imprint of Novare Science \& Math LLC.

For the complete catalog of textbooks and resources available from Novare Science \& Math, visit novarescienceandmath.com.

Contents

Acknowledgement iii
Preface iv
Chapter 2 1
Chapter 3 9
Chapter 4 16
Chapter 5 41
Chapter 6 68
Chapter 7 71
Chapter 8 80
Chapter 10 91
Chapter 11 92
Chapter 13 102

Chapter 2

Unit Conversions

1.

$1750 \mathrm{~m} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=5740 \mathrm{ft}$
2.
$3.54 \mathrm{~g} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.00354 \mathrm{~kg}$
3.
$41.11 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.04111 \mathrm{~L}$
4.
$7 \times 10^{8} \mathrm{~m} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}}=4 \times 10^{5} \mathrm{mi}$
5.
$1.5499 \times 10^{-12} \mathrm{~mm} \cdot \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}=1.5499 \times 10^{-15} \mathrm{~m}$
6.
$750 \mathrm{~cm}^{3} \cdot \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}=7.5 \times 10^{-4} \mathrm{~m}^{3}$
7.
$2.9979 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in}}=9.8356 \times 10^{8} \frac{\mathrm{ft}}{\mathrm{s}}$
8.
$168 \mathrm{hr} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=605,000 \mathrm{~s}$
9.
$5570 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}}=5.57 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$
10.
$45 \frac{\mathrm{gal}}{\mathrm{s}} \cdot \frac{3.786 \mathrm{~L}}{1 \mathrm{gal}} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1.0 \times 10^{1} \frac{\mathrm{~m}^{3}}{\mathrm{~min}}$
11.
$600,000 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \cdot \frac{(0.3048 \mathrm{~m})^{3}}{1 \mathrm{ft}^{3}} \cdot \frac{1000 \mathrm{~L}}{1 \mathrm{~m}^{3}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=6 \times 10^{10} \frac{\mathrm{~L}}{\mathrm{hr}}$
12.
$5200 \mathrm{~mL} \cdot \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \cdot \frac{1 \mathrm{~m}^{3}}{1000 \mathrm{~L}}=5.2 \times 10^{-3} \mathrm{~m}^{3}$
13.
$5.65 \times 10^{2} \mathrm{~mm}^{2} \cdot \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} \cdot \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=0.876 \mathrm{in}^{2}$
14.
$32.16 \frac{\mathrm{ft}}{\mathrm{s}^{2}} \cdot \frac{12 \mathrm{in}}{1 \mathrm{ft}} \cdot \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=9.802 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
15.
$5.001 \frac{\mu \mathrm{~g}}{\mathrm{~s}} \cdot \frac{1 \mathrm{~g}}{10^{6} \mu \mathrm{~g}} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=3.001 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~min}}$
16.
$4.771 \frac{\mathrm{~g}}{\mathrm{~mL}} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \cdot \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \cdot \frac{1000 \mathrm{~L}}{1 \mathrm{~m}^{3}}=4771 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
17.
$13.6 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \cdot \frac{1000 \mathrm{mg}}{1 \mathrm{~g}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=1.36 \times 10^{10} \frac{\mathrm{mg}}{\mathrm{m}^{3}}$
18.
$93,000,000 \mathrm{mi} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=1.5 \times 10^{13} \mathrm{~cm}$
19.
$65 \frac{\mathrm{mi}}{\mathrm{hr}} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=29 \frac{\mathrm{~m}}{\mathrm{~s}}$
20.
$633 \mathrm{~nm} \cdot \frac{1 \mathrm{~m}}{1 \times 10^{9} \mathrm{~nm}} \cdot \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \cdot \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=2.49 \times 10^{-5} \mathrm{in}$
21.
$0.05015 \cdot 3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}}=3.37 \times 10^{7} \frac{\mathrm{mi}}{\mathrm{hr}}$
22.
$T_{F}=98.6^{\circ} \mathrm{F}$
$T_{C}=$?
$T_{C}=\frac{5}{9}\left(T_{F}-32\right)=\frac{5}{9}\left(98.6^{\circ} \mathrm{F}-32\right)=37.0^{\circ} \mathrm{C}$
23.
$T_{C}=50.0^{\circ} \mathrm{C}$
$T_{F}=$?
$T_{C}=\frac{5}{9}\left(T_{F}-32\right)$
$T_{F}=\frac{9}{5} T_{C}+32=\frac{9}{5}\left(50.0^{\circ} \mathrm{C}\right)+32=122^{\circ} \mathrm{F}$
24.
$t=1 \mathrm{yr} \cdot \frac{365 \text { days }}{1 \text { year }} \cdot \frac{24 \mathrm{hr}}{1 \text { day }} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=31,540,000 \mathrm{~s}$
$v=c=3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$d=$?
$v=\frac{d}{t}$
$d=v t$
$d=3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 31,540,000 \mathrm{~s}=9.46 \times 10^{15} \mathrm{~m}$ (this is one lt-yr expressed in m.)
$4.3 \mathrm{lt}-\mathrm{yr}=4.3 \cdot 9.46 \times 10^{15} \mathrm{~m}=4.07 \times 10^{16} \mathrm{~m} \cdot \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=4.1 \times 10^{13} \mathrm{~km}$

Motion Study Questions Set 1

1.

$d=25.1 \mathrm{mi} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}=4.04 \times 10^{4} \mathrm{~m}$
$t=0.50 \mathrm{hr} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=1800 \mathrm{~s}$
$v=$?
$v=\frac{d}{t}=\frac{4.04 \times 10^{4} \mathrm{~m}}{1800 \mathrm{~s}}=22 \frac{\mathrm{~m}}{\mathrm{~s}}$
2.
$22 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=79 \frac{\mathrm{~km}}{\mathrm{hr}}$
3.
$t=4.25 \mathrm{hr} \cdot \frac{3600 \mathrm{~s}}{\mathrm{hr}}=15,300 \mathrm{~s}$
$v=5.0000 \frac{\mathrm{~km}}{\mathrm{hr}} \cdot \frac{1000 \mathrm{~m}}{\mathrm{~km}} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}}=1.389 \frac{\mathrm{~m}}{\mathrm{~s}}$
$d=$?
$v=\frac{d}{t}$
$d=v t$
$d=1.389 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 15,300 \mathrm{~s}=21,300 \mathrm{~m} \cdot \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=21.3 \mathrm{~km}$
4.
$21.3 \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}} \cdot \frac{1 \mathrm{mi}}{5,280 \mathrm{ft}}=13.2 \mathrm{mi}$
5.
$150.0 \frac{\mathrm{mi}}{\mathrm{hr}} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}} \cdot \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=241.4 \frac{\mathrm{~km}}{\mathrm{hr}}$
6.
$v=150.0 \frac{\mathrm{mi}}{\mathrm{hr}} \cdot \frac{1609 \mathrm{~m}}{\mathrm{mi}} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}}=67.04 \frac{\mathrm{~m}}{\mathrm{~s}}$
$d=10.0 \mathrm{mi} \cdot \frac{1609 \mathrm{~m}}{\mathrm{mi}}=16,090 \mathrm{~m}$
$t=$?
$v=\frac{d}{t}$
$t=\frac{d}{v}=\frac{16,090 \mathrm{~m}}{67.04 \frac{\mathrm{~m}}{\mathrm{~s}}}=240.0 \mathrm{~s} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=4.00 \mathrm{~min}$
7.
$d=3.0 \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=3.0 \times 10^{3} \mathrm{~m}$
$t=1 \mathrm{hr} 20.0 \mathrm{~min}=80.0 \mathrm{~min} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=4.80 \times 10^{3} \mathrm{~s}$
$v=$?
$v=\frac{d}{t}=\frac{3.0 \times 10^{3} \mathrm{~m}}{4.80 \times 10^{3} \mathrm{~s}}=0.63 \frac{\mathrm{~m}}{\mathrm{~s}}$
8.
$v_{i}=0$
$v_{f}=45 \frac{\mathrm{mi}}{\mathrm{hr}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{~min}} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \cdot \frac{5,280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}=20.1 \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=36 \mathrm{~s}$
$a=$?
$a=\frac{v_{f}-v_{i}}{t}=\frac{20.1 \frac{\mathrm{~m}}{\mathrm{~s}}-0}{36 \mathrm{~s}}=0.56 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
9.
$v_{i}=31 \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=17 \mathrm{~s}$
$v_{f}=22 \frac{\mathrm{~m}}{\mathrm{~s}}$
$a=$?
$a=\frac{v_{f}-v_{i}}{t}=\frac{22 \frac{\mathrm{~m}}{\mathrm{~s}}-31 \frac{\mathrm{~m}}{\mathrm{~s}}}{17 \mathrm{~s}}=-0.53 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
10.
$d=14.5 \mathrm{~m}$
$v=c=3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=$?
$v=\frac{d}{t}$
$t=\frac{d}{v}=\frac{14.5 \mathrm{~m}}{3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=4.83 \times 10^{-8} \mathrm{~s} \cdot \frac{1 \times 10^{9} \mathrm{~ns}}{\mathrm{~s}}=48.3 \mathrm{~ns}$
11.
$v_{i}=0$
$v_{f}=0.80 \cdot 3.00 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=2.40 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=18 \mathrm{hr} 6 \min 45 \mathrm{~s}=64,800 \mathrm{~s}+360 \mathrm{~s}+45 \mathrm{~s}=65,205 \mathrm{~s}$
$a=$?
$a=\frac{v_{f}-v_{i}}{t}=\frac{2.40 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}-0}{65,205 \mathrm{~s}}=3680 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
12.
$d=8.96 \times 10^{9} \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=8.96 \times 10^{12} \mathrm{~m}$
$v=3.45 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=$?
$v=\frac{d}{t}$
$t=\frac{d}{v}=\frac{8.96 \times 10^{12} \mathrm{~m}}{3.45 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}}=2.597 \times 10^{7} \mathrm{~s} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}} \cdot \frac{1 \text { day }}{24 \mathrm{hr}}=301$ days
13.
$a=5.556 \times 10^{6} \frac{\mathrm{~cm}}{\mathrm{~s}^{2}} \cdot \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=5.556 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$t=45 \mathrm{~ms} \cdot \frac{1 \mathrm{~s}}{1000 \mathrm{~ms}}=4.5 \times 10^{-2} \mathrm{~s}$
$v_{i}=0$
$v_{f}=$?
$a=\frac{v_{f}-v_{i}}{t}$
$v_{f}=a t+v_{i}=\left(5.556 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)\left(4.5 \times 10^{-2} \mathrm{~s}\right)+\left(0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=2.5 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}$
14.
$v_{i}=4.005 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}$
$a=23.1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$t=13.5 \mathrm{~s}$
$v_{f}=$?
$a=\frac{v_{f}-v_{i}}{t}$
$v_{f}=a t+v_{i}=\left(23.1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 13.5 \mathrm{~s}\right)+4.005 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}=4.32 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}$

Solutions Manual to Accompany Accelerated Studies in Physics and Chemistry
15.
$v=c=2.9979 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$d=1.4965 \times 10^{8} \mathrm{~km} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=1.4965 \times 10^{11} \mathrm{~m}$
$t=$?
$v=\frac{d}{t}$
$t=\frac{d}{v}=\frac{1.4965 \times 10^{11} \mathrm{~m}}{2.9979 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}}=499.18 \mathrm{~s} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=8.3197 \mathrm{~min}$

Chapter 3

Newton's Second Law Practice Problems

1.

$m=1880 \mathrm{~kg}$
$a=1.50 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$F=$?
$a=\frac{F}{m}$
$F=m a=1880 \mathrm{~kg} \cdot 1.50 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=2820 \mathrm{~N}$
2.
$m=188.4 \mathrm{~g} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.1884 \mathrm{~kg}$
$g=9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$F_{w}=$?
$F_{w}=0.1884 \mathrm{~kg} \cdot 9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=1.85 \mathrm{~N}$
3.

$$
\begin{aligned}
& F=250.0 \mathrm{~N} \\
& m=144,000 \mathrm{mg} \cdot \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.144 \mathrm{~kg} \\
& a=? \\
& a=\frac{F}{m}=\frac{250.0 \mathrm{~N}}{0.144 \mathrm{~kg}}=1740 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

4.

$a=2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$F=230,000 \mathrm{~N}$
$m=$?
$a=\frac{F}{m}$
$m=\frac{F}{a}=\frac{230,000 \mathrm{~N}}{2.3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=1.0 \times 10^{5} \mathrm{~kg}$
5.
$a=0.0022 \frac{\mathrm{mi}}{\mathrm{hr}^{2}} \cdot \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \cdot \frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}} \cdot \frac{1 \mathrm{hr}}{3600 \mathrm{~s}}=2.732 \times 10^{-7} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$m=2.2 \mathrm{Mg} \cdot \frac{1 \times 10^{6} \mathrm{~g}}{1 \mathrm{Mg}} \cdot \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=2.2 \times 10^{3} \mathrm{~kg}$
$F=$?
$a=\frac{F}{m}$
$F=m a=2.2 \times 10^{3} \mathrm{~kg} \cdot 2.732 \times 10^{-7} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=6.0 \times 10^{-4} \mathrm{~N}$
6.

$$
\begin{aligned}
& F_{w}=125.1 \mathrm{lb} \cdot \frac{4.45 \mathrm{~N}}{1 \mathrm{lb}}=556.7 \mathrm{~N} \\
& g=9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& m=? \\
& F_{w}=m g \\
& m=\frac{F_{w}}{g}=\frac{556.7 \mathrm{~N}}{9.80 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=56.8 \mathrm{~kg}
\end{aligned}
$$

