Greek Discoveries

Section 1

3.1 The Distributive Property and Division 2
3.2 Mathematically Related Values 6
3.3 Solving More Complex Equations 10
3.4 Polynomials 16
3.5 Quiz 1 - Prime Numbers 20
Section 2
3.6 Factors and Factoring 21
3.7 Adding Polynomials 25
3.8 Greatest Common Factor 29
3.9 Complex Relationships Between Values 33
3.10 Quiz 2 - Perfect Numbers 37
Section 3
3.11 Solving Equations With Fractions or Decimals 38
3.12 Subtracting Polynomials 43
3.13 Factoring the Greatest Common Factor From a Polynomial 47
3.14 Simplifying Radicals 52
3.15 Review for Test 58
3.16 Test - Tight Around the Middle 61

Math in History

Thales was a Greek mathematician, philosopher, and astronomer who lived around 600 years before Christ. He is said to have predicted the total solar eclipse that occurred on May 28, 585 B.C. This is the first record of someone predicting an eclipse.

When a term is

negative and is divided by a negative term, the quotient is positive.

$$
\frac{8^{4} x^{2}}{-2}-\frac{6 x}{-2}=-4 x^{2}+3 x
$$

The Distributive Property and Division

Just as the distributive property is used for multiplication, it can also be used for division.

In algebra, division is usually written in fractional form and the divisor (denominator) distributed to each term in the numerator. Each term in the numerator must be divided by the denominator.

Example 1 Divide: $(3 x+6) \div 3$.

$\frac{3 x+6}{3}$ Original problem set up as a fraction.
$\frac{3 x}{3}+\frac{6}{3}$ Division distributed to each term in the numerator.
$\frac{\frac{1}{3 x}}{\frac{3}{1}}+\frac{\frac{2}{3}}{3} \quad$ Factors canceled.
$x+2$ Simplified.

Example 2 Divide: $\left(8 x^{2}-6 x+36\right) \div(-2)$.
$\frac{8 x^{2}-6 x+36}{-2}$ Original problem set up as a fraction.
$\frac{8 x^{2}}{-2}-\frac{6 x}{-2}+\frac{36}{-2}$ Division distributed to each term in the numerator.
$\frac{8 x^{2}}{-2}-\frac{{ }^{3}}{-2 x}+\frac{18}{-2} \quad$ Factors canceled.
Remember that the negative sign
$-4 x^{2}+3 x-18$ Simplified. still remains, so denominators after canceling are -1 .

Example 3 Divide: $\left(15 x y^{2}-y^{4}+12\right) \div 3 x y^{2}$.
$\frac{15 x y^{2}-y^{4}+12}{3 x y^{2}}$ Original problem set up as a fraction.
$\frac{15 x y^{2}}{3 x y^{2}}-\frac{y^{4}}{3 x y^{2}}+\frac{12}{3 x y^{2}}$ Division distributed to each term in the numerator.
$\frac{15 x y^{2}}{3 x y^{2}}-\frac{y^{2}}{3 x y^{2}}+\frac{4}{12}$ (11 $\frac{y^{2}}{3 x y^{2}}$ Factors canceled.
$5-\frac{y^{2}}{3 x}+\frac{4}{x y^{2}} \quad$ Simplified.

$\left(12 x^{2}-6\right) \div 6$
 $\frac{12 x^{2}}{5}-\frac{6}{5}=2 x^{2}-1$

Problems do not need to be rewritten in fractional form. However, it is easier to verify that each term in the dividend is divided by the divisor when rewritten as a fraction.

Today's Lesson

Simplify.

1. $(5 x-10) \div 5$
2. $(12 x+8) \div-4$
3. $(24 x-18 y+27) \div 3$
4. $\left(4 z^{2}-2 z\right) \div 2 z$
5. $\left(4 k^{2}+6 k\right) \div 2 k$
6. $\left(16 x^{3}+4 x^{2}-20 x\right) \div-4 x$
7. $(4 x-8) \div 2 x$
8. $\left(6 p^{3}+2 p\right) \div 3 p$

REVIEW

Solve. 2.14
11. $4 x-17=-1$
12. $-3 x-10=35$
13. $12 x-6=54$
14. $7+4 y=31$

Simplify. 2.12
15. $\sqrt[3]{x^{3}}$ \qquad
16. $\sqrt{\frac{9}{16}}$ \qquad
17. $\sqrt{36}$ \qquad 18. $\sqrt[5]{-1}$ \qquad

Combine like terms in the expressions. 2.7
19. $8 x y z+6 x y-x y z$
20. $-2 x^{2} y+5 x^{2} y-x^{2}$
21. $9 n-4 n-n+n^{2}$

Multiply the terms. 2.8

22. $x z \cdot x y z^{2} \cdot 5 x$
23. $-12 y^{4} \cdot 12 z^{5}$
24. $-x y z \bullet-z \bullet 4 x y$

Simplify. 2.7, 2.11
25. $2 y z\left(7 y z+3 z^{2}\right)$
26. $5\left(y^{2}-y+2\right)-3 y-8$

Divide the terms. 2.9
27. $63 x^{14} y^{2} \div-54 y z^{3}$
28. $x^{3} y z^{4} \div x^{2} y^{3} z$
29. $-97 x y z \div 97 x y z$

Solve. 1.7
30. $9.5 \cdot 0.04$
31. $12-0.08$
32. $4.8 \div 0.06$
33. $35+8.07$

Assign variable(s) to the unknown(s), then translate the expression. 2.13
34. one-third the product of the base and height \qquad
35. double the sum of the length and width \qquad

Translate into symbols. Do not simplify or solve. 2.2, 2.6
36. a number equals seven more than six divided by another number \qquad
37. the quotient of forty-eight and eight, diminished by the square of a number \qquad
38. the square of two, times the difference of ten and five, equals a number plus two \qquad

Write the name of the property each equation illustrates. 1.3
39. $b \cdot 1=b$ \qquad
40. $(9+11)+7=9+(11+7)$
41. $n+(-n)=0$ \qquad

Write the word(s) for each definition.

42. the number above the radical sign that indicates the root called for 2.12 \qquad
43. the number under the radical sign for which the root is found 2.12

Today's Lesson

Simplify.

44. $\left(8 x^{2}-2 x\right) \div 2 x$
45. $(3 d-1) \div 4 d^{2}$
46. $\left(16 x^{2} y+18 x y^{2}+20\right) \div 4 x y$

Extra Practice

Simplify.
47. $\left(2 n^{2}-n^{4}\right) \div n^{2}$
48. $\left(3 y^{3}-2 y\right) \div 2 y$
49. $\left(12 x^{2}-4 x+28\right) \div 4$
50. $\left(32 a^{2} b+5 a b-8 a^{3}\right) \div-4 a b$
51. $\left(21 a^{2} b-9 b+3 a\right) \div 3 a$
52. $\left(22 x^{2} y+16 x y-8 y\right) \div 2 y$

