Add as in model:
Where does the 2 of 12 come from?

\qquad
$\underline{10}+\underline{4}=14+\ldots=$

\bullet^{\bullet}	\bullet^{\bullet}

\bullet	\bullet	\bullet	\bullet
	\bullet	\bullet	\bullet

\bullet^{\bullet}	\bullet^{\bullet}

\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet

\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet

\qquad

\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet

\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet

$$
\begin{array}{|ll|ll}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\hline
\end{array}=
$$

\qquad
© Edric Cane 2013 Copying without written permission is illegal.

Multiples of

423: The digits are 4,2 , and 3 . The SUM of the digits is $4+2+3=9$
For all multiples of 9: The sum of the digits is always 9 (or a multiple of 9).
We know that 423 is a multiple of 9 because $4+2+3=$ \qquad .
$111,111,111$ is a multiple of 9 because the sum of the digits is \qquad .
$8+1=9$.
$6+3=$ \qquad So \qquad and \qquad are multiples of 9 . So \qquad and \qquad are multiples of 9 .
$7+2=$ \qquad So \qquad and \qquad are multiples of 9 .

Write the unit's digit to make two -digit multiples of 9 .

$\underline{81}$	$\underline{7}$	$\underline{6}$	$\underline{5}$	$\underline{4}$	$\underline{3}$
$\underline{2}$	$\underline{1}$	$\underline{9}$	$\underline{7}$	$\underline{4}$	$\underline{6}$
$\underline{7}$	$\underline{8}$	$\underline{3}$	$\underline{5}$	$\underline{6}$	$\underline{2}$
$\underline{5}$	$\underline{4}$	$\underline{1}$	$\underline{8}$	$\underline{2}$	$\underline{7}$

Count by 9s from 9 to 90:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

With feet (marching?) or fist keeping the rhythm, repeat with a slow steady beat:

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

On the same 4-beat rhythm, marking the rhythm with feet or fist, repeat as needed: Read with even beat:

Read with even beat:

56
is

3	4
times	4
7	8
times	8

1	2	3	4
12	is	3 times	4
5	6	7	8
fifty -	six is	7 times	8

Based on that information:
$12=$ \qquad \times \qquad You see 12, and you keep counting: 3 times 4.
$56=$ \qquad \times \qquad You see 56 and you keep counting: 7 times 8 .

Now we know two different Factor pairs for 12, 16, 36:

