
®Life of Fred

Five Days of Upper Division Math:

Set Theory

Modern Algebra

Abstract Arithmetic

Topology

Stanley F. Schmidt, Ph.D.

  
Polka Dot Publishing



A Note to Readers

I am a mathematician.  That wasn’t always the case.  In high school the
four years of math were easy compared with reading David
Copperfield (didn’t like) and Moby Dick (liked), typing papers (10–20

pages), or memorizing history facts.  But that didn’t make me a
mathematician.

The first two years of college calculus were not pleasant.  The
teachers made us memorize stuff and gave us no real reason why we

 might ever use it.  Opening my old calculus textbook  at random I read: w

146.  Centroid and Moment of Inertia of Arc

   Let the arc AB of a curve be divided into n parts as show in

k k
Figure 180, and let (x ,y ) be any point on the kth segment of arc

k
Äs .  In accordance with the definition of centroids for areas and
volumes, we define the centroid of an arc as the point (2x , y2)

k k
determined by the relations s2x  = lim Ó x Äs   [etc.]

  Taught that way, calculus was definitely not fun.  My four
semester grades were A, C, B, and C.   ww

Needless to say, I wasn’t a mathematician after those two years of
calculus.  

At that time, there were three reasons I chose mathematics as my
major: Î The grading wasn’t subjective.  If you got the right answer, the
teacher couldn’t argue.  A friend of mine was a political science major.  He supported the
individual over the state and 99% of the faculty were statists.  On one oral Ph.D. exam he received
an A and two F’s.   He had to change universities in order to get his doctorate.   Ï Being a
math major offered much better employment opportunities than any major
with the word studies in it.  Ð Math majors don’t have to write long term
papers.    www

 p. 331 of Thurman S. Peterson’s Calculus with Analytic Geometry w

 Years later, when I taught college calculus, all the tests I gave were open book (noww

more memorizing!), and my lectures included lots of “Fred” to illustrate how calculus is
relevant in everyday life.  Each year I taught, I included more Fred. 

 Life is “slightly” unpredictable.  This is my 35  book.  Five of them have been morewww th

than 540 pages long.  Life of Fred: Trig Expanded Edition was only 496 pages.  Writing
about Fred is a pure joy.  
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How many ounces of Captain Mousebait cereal

(7% flour) should you mix with Sergeant

Sugar cereal (11% flour) to obtain 300 ounces

of cereal with 8% flour?  This is an actual problem,

which can be found on page 28 in Zillions of Practice

Problems for Beginning Algebra.    (answer = 225 ounces.)

Of all my relatives, I was the first one to get a college education. 

 No one could offer me the good news : 

Once you get to 
upper division pure math, 

the world changes

 for the better.    

All the engineering majors who sat next to you in calculus have
gone off to Engineering Land.  They are off computing centroids of arcs
and building bridges, chronometers, and skyscrapers.  

For the happy few who enter the magic worlds 
9  of set theory 

9  of modern algebra 
9  of abstract arithmetic 

9 of topology

there are 
g no “word problems”
g no papers to write
g no concrete applications
g no dates or formulas to memorize.

Instead, there are simply puzzles to solve.  Often the puzzles ask
the student to prove things.  And just like in geometry, there can be more
than one way to create a proof.  

In Life of Fred: Geometry, we showed four different proofs that
the base angles of an isosceles triangle are congruent.

                                                   implies

One way was to draw a segment from the top vertex to the midpoint of the base (a median) and

show the triangles are congruent by SSS.  A second way was to draw the angle bisector from the top angle

and show the triangles are congruent by SAS.    

Instead of computing answers like the folks over in Engineering
Land, you will be engaged in pure thought.  Both activities can be hard
work, but they are different kinds of work.  
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  What we’ll miss

I became a mathematician during my junior and senior years at the
university.  I can’t point to a particular instant in time when this happened,
but I remember the joy of taking five math courses ((((( in my last
undergraduate semester.  

I have never seen any other book attempt to do what we are going
to do here: The first five days in four upper division math courses taught
by our master teacher Fred Gauss.  Some of the puzzles (proofs) will be
easy and some will be hard.  If they were all easy, it really wouldn’t be
as much fun.  

There will be no final exam, no grades, and no competition with
other students.  

I have been looking forward to writing this book for more than a
decade.  I love set theory, modern algebra, abstract arithmetic, and
topology.  One thing that has held me back is that there will be no bank

robberies, no animals, no C.C. Coalback, and no boxing
matches in this book.  These things were easy to include
when I wrote all the books from Life of Fred: Apples up
through Life of Fred: Calculus.  The former things are
passed away.  I am making all things new.w

THREE PREREQUISITES FOR THIS BOOK

1.  You gotta know what prerequisite means.  
2.  Two decent courses in high school algebra that included such things as
unions of sets, math induction, the associative property, one-to-one
functions, inverse functions, and multiplying matrices.  One decent course
in geometry that included lots of proofs.  
3.  The math in this book is the first parts of upper division mathematics
for math majors.  In a university setting the students in these classes are
battle hardened with two years of calculus.  They are used to having to
work hard to understand the new material.  They do not fold up into a
little ball and blow away when they don’t instantly understand a new
concept.  The third prerequisite is that you are not a fluff ball.  

I stole those two sentences from another book.w
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Monday

Set Theory

Prologue 
It was the start of the summer classes at KITTENS University.  The

university president had told Fred that as long as he taught the required math
courses, he was free to augment his schedule with any other classes he
wished.  

Fred was overjoyed.  He had never been given such freedom.  This
was a chance to teach some junior- and senior-level math courses.  

The president’s secretary emailed the list of the courses he was
required to teach:

8–9 Arithmetic
9–10 Beginning Algebra
10–11 Advanced Algebra
11–noon Geometry
noon–1 Trigonometry
1–2 Calculus
2–3 Statistics
3–3:05 Break
3:05–4 Linear Algebra

Fred was delighted.  This was a lighter load than he had had in the
spring semester.  He added his four favorite upper division courses:

4–5 Set Theory
5–6 Modern Algebra
6–7 Abstract Arithmetic
7–8 Topology
8–9 Arithmetic
9–10 Beginning Algebra
10–11 Advanced Algebra
11–noon Geometry
noon–1 Trigonometry
1–2 Calculus
2–3 Statistics
3–3:05 Break
3:05–4 Linear Algebra

For a six-year-old experienced university professor like Fred, this
would be a pleasant twelve-hour teaching schedule.  The major difference for
Fred would be that he would go jogging at 3 a.m. instead of at dawn as he
had done for years.  

4 a.m.   
There were 300 students in the Archimedes auditorium classroom

awaiting their master teacher.  Two of Fred’s best students, Betty and
Alexander, were there.  

The news had spread through the mathematics communities around
the world that Fred was going to teach four upper division math courses for
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MONDAY    Set Theory

the first time.  Many people instantly changed their summer plans and
headed to KITTENS University.  They filled the rest of the seats in the
auditorium.  The same people would be attending all four classes.

 Fred entered.  He had on his customary bow tie that he liked 
to wear when he was teaching, but had forgotten to change out of 
his jogging shorts.  No one noticed.  He waved hello and the room 
became silent.

Good morning.  (² Fred’s speech is in this font.)
This was Fred’s time of day.  At about 6 p.m. each evening he would

be heading to bed to get his needed nine hours of sleep that every six-year-
old needs.  One of the students had a thermos with a liter of strong hot
coffee.  After he had drunk a little, he had a quart.

Some mathematicians have claimed that virtually every part of
math could be ultimately based on set theory.  It’s a good place to start our
day.  

You have had high school math so you already know that a set is
just any collection of things.  The set containing � and the number 8 can
be written as {�, 8}.  Those curly parentheses are called braces.  This is a
left brace.  

Fred wrote {  on the blackboard.  
{�, 8} and {8, �} are the same set.  The order in which you list

the elements of the set doesn’t matter.  
Please don’t list the same member  of a set more than once.  Don’tw

write {�, 8, �}.  It makes it hard to count the number of elements in a set
if there are duplicates in the listing.  

The cardinality of a set is the number of members in the set.  The
cardinality of the empty set, { }, is zero.  The empty set is sometimes
called the null set and is sometimes represented by the symbol ø.  

A second way to list a set is to use set-builder notation.  If I
wanted to list all the prime numbers that are less than a thousand, I could
write {2,  3,  5,  7,  11,  13,  17,  19,  23,  29,  31,  37,  41,  43,  47,  53,  59,  61,  67,  71,  73,  79,  83,  89,  97, 
101,  103,  107,  109,  113,  127,  131,  137,  139,  149,  151,  157,  163,  167,  173,  179,  181,  191,  193,  197,  199, 
211,  223,  227,  229,  233,  239,  241,  251,  257,  263,  269,  271,  277,  281,  283,  293,  307,  311,  313,  317,  331, 
337,  347,  349,  353,  359,  367,  373,  379,  383,  389,  397,  401,  409,  419,  421,  431,  433,  439,  443,  449,  457, 
461,  463,  467,  479,  487,  491,  499,  503,  509,  521,  523,  541,  547,  557,  563,  569,  571,  577,  587,  593,  599, 
601,  607,  613,  617,  619,  631,  641,  643,  647,  653,  659,  661,  673,  677,  683,  691,  701,  709,  719,  727,  733, 

 member of a set = element of a setw
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MONDAY    Set Theory

739,  743,  751,  757,  761,  769,  773,  787,  797,  809,  811,  821,  823,  827,  829,  839,  853,  857,  859,  863,  877, 

881,  883,  887,  907,  911,  919,  929,  937,  941,  947,  953,  967,  971,  977,  983,  991,  997} or, using set-
builder notation, write {x | x is a prime number less than 1000}.  This is
read as, “The set of all x such that x is a prime number less than 1000.”

If I were to write {y | y is a prime number less than 1000} that
would be the same set.  

We abbreviate “is a member of” by ,.       8 , {�, 8}
/ /We abbreviate “is not a member of” by , 9 , {�, 8}.  

If we have two sets, A and B, we define the union of A and B,
 A c B, as {x | x , A or x , B}.

The intersection of A and B, A 1 B, is defined as {x | x , A and 
x , B}.

Or in mathematics is the non-exclusive or.  It means one or the
other or both.  Lawyers who want to indicate the non-exclusive or write
and/or.  Police who shout, “Stop or I’ll shoot” are hopefully using the
exclusive or.  You don’t want to stop and get shot.  

The other thing we did in high school math was 
to draw Venn diagrams.  We colored in circles. 

We defined subset:    
C is a subset of D, written C d D, if every element of C was in D. 

In thirteen years of school—kindergarten through 12  grade—thisth

was set theory.  In mathematics, this material is called naive set theory.   w

The only thing wrong with naive set theory is that it contained
contradictions.  You can prove a statement is true, and you can prove its
opposite is also true.  Once that happens, the game is over.  Everything
falls apart.  

In logic, if you know that statement P is true and you also know
that not-P is true, then you can prove that anything is true.  In symbols, 
(P & ¬P) Y Q, where Q is any statement.   ww

 Naive is pronounced nigh-EVE.  Naive = simple, unsophisticated.  Coloring in circles isw

not really heavy-duty math.

 &  =  and         ¬  =  not           Y   =  impliesww
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MONDAY    Set Theory

There are two famous theorems in logic.  The first one is
(P & ¬P) Y Q.  There shalt not be any contradictions.

The second one is called modus ponens.  If you know that
statement P implies statement Q and you know that statement P is true,
then you can infer that statement Q is also true.  (P Y Q  &  P) Y Q.

If your mother says, “If you do that, I’ll ground you,” and if you do
that, then you know you’ll be grounded.   

Creating proofs is the heart of upper division math.  One big
reason you spent a year studying high school geometry was to learn how
to prove things.  It wasn’t to learn area formulas or that the base angles of
an isosceles triangle are equal.  In the eighth grade you already knew that

         the opposite sides of a parallelogram are equal.  What you learned in
geometry was how to prove that.  

The rules for doing a proof are easy: Î Every line must have a
reason that justifies that line, and Ï the last line must be what you want to
prove.  The rules for most board games are much more complicated.  

Here are some of the reasons we used in geometry.  We use the
same ones in upper division math.

1.  Given
2.  Postulate or axiom.  (These words mean the same thing.) 
3.  Definition
4.  Previously proven theorem
5.  Beginning of an indirect proof
6.  Contradiction in steps ___ and ___, and therefore the 
     assumption in step ___ is false.
7.  Cases    

Reasons 5 and 6 are always paired together.  In the beginning of an
indirect proof, you assume the opposite of what you want to prove.  Then
you derive a contradiction.  That contradiction indicates that your initial
assumption was false.

How to Prove You Are Alive
1.  Assume I’m dead. 1.  Beginning of an indirect proof
2.  I couldn’t be speaking to you. 2.  Definition of dead
3.  I am talking to you. 3.
4.  I am alive. 4. Contradiction in steps 2 and 3 and therefore

the assumption in step 1 is false.  
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MONDAY    Set Theory

If the beginning assumptions (postulates or axioms) are true, then
what you prove must also be true.  Mathematics is a truth-generating
machine.  

Of course, if the postulates are inconsistent, then the whole system
crashes, and you can prove anything.  

Fred giggled a little at this point.  
And what most geometry teachers and most geometry books fail to

mention is that The high school geometry postulates are inconsistent.

A stunned silence fell over the audience.  Everyone stopped writing
and looked at Fred.  Those who had not read Life of Fred: Geometry had no
idea this was true.  One of the students, Thomas, raised his hand and said, “I
can’t believe that.  Everyone knows that high school geometry is true. 
Unless you show me a contradiction—one I can see and understand—”

No problem.  What if I prove that every triangle is isosceles?  
Thomas laughed to himself.  And Fred began.

Statement     Reason                 
1.  Any old triangle ABC. 1.  Given
2.  Draw the angle bisector at C 2.  By the angle measurement postulate p C 

has a measurement between 0 and 180.  And 
by the angle measurement postulate, there is 
an angle equal to half of that measurement. 
(Or, more simply, angle bisectors exist.)

3.  Erect the perpendicular bisector of 'A'B. 3.  Theorem: Every segment has a midpoint, 
and Theorem: You can erect a z to a line at 
any point on that line.  (Or, more simply, 
every segment has a z bisector.)

4.  The angle bisector and the z bisector 4.  Case 1  (One of two possibilities.)
are parallel.
5.  The angle bisector is z to 'A'B. 5.  Theorem: If a line (in this case 'A'B ) is z 

to one of two parallel lines, it is z to the 
other.
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MONDAY    Set Theory

This marks the end of a proof.   It’s the same as Q.E.D.

�6.  p AHC  p BHC 6.  Theorem: z lines form congruent right 
angles.

� �7.  C''H  C''H 7.  Theorem: Every segment is  to itself.

�8.  ª AHC  ª BHC 8.  ASA

� �9.  p A  p B 9.  Definition of  ª .s

10.  ª ABC is isosceles. 10.  Converse of the Isosceles Triangle 

�theorem.  (If the base p  are , then the ª s

is isosceles.)
11.  The angle bisector and the z bisector 11.  Case 2  (The only other possibility.)
are not parallel.
12.  They intersect. 12.  Definition of not parallel.  

13.  From the point of intersection, P, drop 13.  Theorem: From any point you can drop 
zs to 'A'C and 'B'C. a perpendicular to a line.

14.  PE = PF 14.  Theorem: Any point on an p  bisector is 
equidistant to the sides of the angle.

15.  AP = BP 15.  Any point on a z bisector is equidistant 
from the endpoints of the segment.

�16.  ª APE  ª BPF 16.  Hypotenuse-leg theorem.  (In any pair of

�ª APD  ª BPD right ª , if the hypotenuses and one pair of s

� �legs are , then the ª are .)s

� � �17.  p 1  p 2      p 3  p 4 17.  Definition of  ª .s

�18.  p CAB  p CBA 18.  Angle Addition postulate
19.   ª ABC is isosceles. 19.  Converse of the Isosceles Triangle 

�theorem.  (If the base p  are , then the ª s

:is isosceles.)   

There is nothing wrong with this proof if you accept the postulates
of high school geometry.   The problem is that high school geometry
allows this to happen.  The postulates allow this contradiction (and many
others) to happen.  

Thomas’s life changed at this point.  He had seen the broader vistas
of upper division math.

20



MONDAY    Set Theory

    Oh! thus be it ever, when freemen shall stand
    Between their loved homes and the war's desolation!
    Blest with victory and peace, may the 

heaven-rescued land
    Praise the Power that hath made and preserved us a 

nation.
    Then conquer we must, when our cause it is just,
    And this be our motto: "In God is our trust."
    And the star-spangled banner in triumph shall wave
    O'er the land of the free and the home of the brave! 

And naive set theory contains . . .
The entire classroom said, “No.  No.  No.  It can’t be.  Impossible. 

Incredible.  No way.”
. . . contradictions.  
The audience looked like they had been doused with a bucket of cold

water.  
Even with the little bit of set theory that I’ve described this

morning, there’s enough to find a contradiction.  And once you have a
contradiction, P & ¬P, you can prove anything.  (P & ¬P) Y Q

Betty turned to Alexander and said the famous words from the
“Wizard of Oz” movie: “I don’t think we’re in Kansas anymore.”  
Everyone in the audience fastened their seatbelts.   Every eye was w

on Fred.  
First of all, let’s consider all those sets that are members of

themselves.   Let A be the name of this set.ww

Then A = {x | x , x}.
Is A , A?  
Obviously yes.  It satisfies the definition: {x | x , x}.  

Most sets do not contain themselves as members.  For example,
the set of natural numbers, {1, 2, 3, 4, 5, . . .}.  Or the set of all ducks.

Or the set of all fish 
that know the words to 
the fourth verse of our 
national anthem.  
Another name for this 
last set is the empty set, 
{  }, or  ø.  

 All of the classrooms that Fred teaches in have seatbelts.  Boring teachers should havew

classrooms with pillows.  

 Sets that contain themselves as members are fairly rare.  Most sets do not containww

themselves as a member.  The set of your hands contains              .   It doesn’t contain any
sets inside the braces.  

One set that is a member of itself is the set of all sets mentioned in this book.  
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MONDAY    Set Theory

Sets that do not contain themselves as members are called normal
/sets.  Let’s let B equal the set of all normal sets.  B = {x | x , x}  

Our hour is almost up.  For Tuesday please create proofs for these
two theorems.w

/Theorem 1: If B , B, then B ,B. 
/Theorem 2: If B ,B, then B , B. 

After you have proven both
of these, you have established that  

/             B , B  iff  B ,B.   
(iff = if and only if )

This is a contradiction.

On Tuesday we will go beyond naive set theory.  
I will present a list of set theory axioms that do not contain any 

contradictions.  

I’ll see you tomorrow.

Note to readers:
     Answers to all of Fred ’s
assignments are given in the back of
this book.  
     Please do not just read the
question and just turn to the answer. 
You won’t learn very much if you do
that. 
     Write out your answers first.
     The fun part of this upper
division math is solving the
puzzles—not just learning “stuff.”  

 A theorem is a statement that has been or can be proven.w
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