Life of Fred ${ }^{\circledR}$

Five Days of Upper Division SNath:
Set Theory
Ollodern Algebra
Abstract Ofrithmetic
Topology

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

of OVate ta Readers

Iam a mathematician. That wasn't always the case. In high school the four years of math were easy compared with reading David Copperfield (didn't like) and Moby Dick (liked), typing papers (10-20 pages), or memorizing history facts. But that didn't make me a mathematician.

The first two years of college calculus were not pleasant. The teachers made us memorize stuff and gave us no real reason why we might ever use it. Opening my old calculus textbook ${ }^{*}$ at random I read:

[^0]

Taught that way, calculus was definitely not fun. My four semester grades were A, C, B, and C. ${ }^{* *}$

Needless to say, I wasn't a mathematician after those two years of calculus.

At that time, there were three reasons I chose mathematics as my major: (1) The grading wasn't subjective. If you got the right answer, the teacher couldn't argue. A friend of mine was a political science major. He supported the individual over the state and 99% of the faculty were statists. On one oral Ph.D. exam he received an A and two F 's. He had to change universities in order to get his doctorate. (2) Being a math major offered much better employment opportunities than any major with the word studies in it. (3) Math majors don't have to write long term papers. ${ }^{* * *}$

* p. 331 of Thurman S. Peterson's Calculus with Analytic Geometry
** Years later, when I taught college calculus, all the tests I gave were open book (no more memorizing!), and my lectures included lots of "Fred" to illustrate how calculus is relevant in everyday life. Each year I taught, I included more Fred.

[^1]Of all my relatives, I was the first one to get a college education. No one could offer me the good news:

$$
\begin{aligned}
& \text { Once you get to } \\
& \text { upper division pure math, } \\
& \text { the world changes } \\
& \text { for the better. }
\end{aligned}
$$

All the engineering majors who sat next to you in calculus have gone off to Engineering Land. They are off computing centroids of arcs and building bridges, chronometers, and skyscrapers.

For the happy few who enter the magic worlds
of set theory of modern algebra © of abstract arithmetic

Instead, there are simply puzzles to solve. Often the puzzles ask the student to prove things. And just like in geometry, there can be more than one way to create a proof.

In Life of Fred: Geometry, we showed four different proofs that the base angles of an isosceles triangle are congruent.

One way was to draw a segment from the top vertex to the midpoint of the base (a median) and show the triangles are congruent by SSS. A second way was to draw the angle bisector from the top angle and show the triangles are congruent by SAS.

Instead of computing answers like the folks over in Engineering Land, you will be engaged in pure thought. Both activities can be hard work, but they are different kinds of work.

I became a mathematician during my junior and senior years at the university. I can't point to a particular instant in time when this happened, but I remember the joy of taking five math courses ©〇అ๑๑๑ in my last undergraduate semester.

I have never seen any other book attempt to do what we are going to do here: The first five days in four upper division math courses taught by our master teacher Fred Gauss. Some of the puzzles (proofs) will be easy and some will be hard. If they were all easy, it really wouldn't be as much fun.

There will be no final exam, no grades, and no competition with other students.

I have been looking forward to writing this book for more than a decade. I love set theory, modern algebra, abstract arithmetic, and topology. One thing that has held me back is that there will be no bank

What we'll miss robberies, no animals, no C.C. Coalback, and no boxing matches in this book. These things were easy to include when I wrote all the books from Life of Fred: Apples up through Life of Fred: Calculus. The former things are passed away. I am making all things new.*

THREE PREREQUISITES FOR THIS BOOK

1. You gotta know what prerequisite means.
2. Two decent courses in high school algebra that included such things as unions of sets, math induction, the associative property, one-to-one functions, inverse functions, and multiplying matrices. One decent course in geometry that included lots of proofs.
3. The math in this book is the first parts of upper division mathematics for math majors. In a university setting the students in these classes are battle hardened with two years of calculus. They are used to having to work hard to understand the new material. They do not fold up into a little ball and blow away when they don't instantly understand a new concept. The third prerequisite is that you are not a fluff ball.

[^2]
Contents

Set Theory 15

cardinality of a set 16 , set builder notation 16 , union and intersection 17 , subset 17 , naive set theory 17 , modus ponens 18 , seven possible reasons to give in a math proof 18 , the high school geometry postulates are inconsistent 19, every triangle is isosceles 19 , normal sets 22

Modern Algebra 23

math theories 23 , definition of a theorem 24 , six properties of equality 25 , binary operations 25 , formal definition of a binary operation 26 , formal definition of a function 26 , definition of a group $27, \forall$ and $\exists 27$, right cancellation law 27, left inverses 27 , commutative law 28

Abstract Arithmetic 29

circular definitions 30, unary operations 31, successor function $\boldsymbol{\Xi}$ 31, natural numbers 31, the five Peano postulates 32, mathematical induction 33

Topology 36

topology is all about friendship 36, listing all possible subsets 37, open sets 37 , the discrete topology 37 , the three axioms of a topology 38 , models for a topology 40 , open intervals 40

Set Theory 43

axiom of extensionality 46 , propositional functions 47 , ZermeloFraenkel axiom \#2 (axiom schema of specification) 48

Modern Algebra 49

three examples of non-commutative groups 51 , uniqueness of right inverses and right identities 55

Abstract Arithmetic 56

no number can equal its successor 56 , definition of + in $\mathbb{N} 57$, recursive definitions 57 , proving $2+2=458$

Topology 61

the rationals are dense in the real numbers 62 , topology of X when X is small 65 , limit points 65 , standard topology for $R 66$, closed intervals 66

Set Theory 67

ZF \#3, the axiom of pairing $68, \mathrm{ZF}$ \#4, the axiom of union 69

Modern Algebra 71

$\left(a^{-1}\right)^{-1}=a 71$, If a and b are members of a group and if $a^{2}=e$ and if $b^{2} a=a b^{3}$, then $b^{5}=e .73$, defining cardinality in terms of $1-1$ onto functions 75 , group isomorphisms 75

Abstract Arithmetic 79

recursive definition of multiplication in $\mathbb{N} 80$, proof of the distributive law 80 , definition of n^{m} in $\mathbb{N} 81$, definition of the least member of a set in $\mathbb{N} 83$, strong induction 83 , total binary relations 84

Topology 85

derived sets 85 , closed sets 85 , set subtraction 85 , closed set axioms for a topology 86 , closure of a set 87 , index sets 87

Set Theory 89

ZF \#5, the power set axiom 89, Cartesian products, relations, and functions 93 , domains, codomains, and ranges 93 , one-to-one onto functions and the cardinality of sets 94

Modern Algebra 95

groups of low order 95, Klein four-group 96, If a and b are members of a group and if $b a^{2}=a b^{3}$ and if $a^{2} b=b a^{3}$, then $a=e$. 98 , subgroups 99

Abstract

Arithmetic 101 partition of a set 101 , equivalence relations 102 , equivalence classes 103 , defining the integers as equivalence classes 105 , integer addition 106, integer multiplication 107, well-defined 108, $<$ in the integers 109 , integer subtraction 109 , proof that a negative times a negative gives a positive answer 109

Topology 110

limit point definition of continuous functions 111, continuous functions and open sets 113

Set Theory 114

ZF \#6, axiom of replacement 114, ZF \#7, axiom of infinity 116, inserting all of abstract arithmetic into set theory 117, ZF \#8, axiom of foundation 118, Schröder-Bernstein theorem 119, inaccessible cardinals and other big cardinals 121, metamathematics 121

Modern Algebra 123

cosets 124, cosets are either equal or disjoint 125, Lagrange's theorem 125, groups, semigroups, monoids, abelian groups, rings, fields, and vector spaces 126

Abstract Arithmetic 128

the rational numbers defined as equivalence classes $129,+, \times,-$, and \div in Q 130 , ways not to define the real numbers 131, cuts in Q 132 , real numbers defined 132 , most irrational numbers do not have nice names 134 , the complex numbers 135

Topology 136

separated 136, connected 136 , continuous image of a connected set is connected 137, open coverings 137, compact 137, continuous image of a compact set is compact $138, \mathrm{~T}_{1}-, \mathrm{T}_{2}$-, regular, T_{3}-, normal, and T_{4}-spaces 139

Solutions 140
Index 206

Set Theory

Prologys

It was the start of the summer classes at KITTENS University. The university president had told Fred that as long as he taught the required math courses, he was free to augment his schedule with any other classes he wished.

Fred was overjoyed. He had never been given such freedom. This was a chance to teach some junior- and senior-level math courses.

The president's secretary emailed the list of the courses he was required to teach:

> 8-9 Arithmetic
> 9-10 Beginning Algebra
> 10-11 Advanced Algebra
> 11-noon Geometry
> noon-1 Trigonometry
> 1-2 Calculus
> 2-3 Statistics
> 3-3:05 Break
> 3:05-4 Linear Algebra

Fred was delighted. This was a lighter load than he had had in the spring semester. He added his four favorite upper division courses:

```
4-5 Set Theory
5-6 Modern Algebra
6-7 Abstract Arithmetic
7-8 Topology
8-9 Arithmetic
9-10 Beginning Algebra
10-11 Advanced Algebra
11-noon Geometry
noon-1 Trigonometry
1-2 Calculus
2-3 Statistics
3-3:05 Break
3:05-4 Linear Algebra
```

For a six-year-old experienced university professor like Fred, this would be a pleasant twelve-hour teaching schedule. The major difference for Fred would be that he would go jogging at 3 a.m. instead of at dawn as he had done for years.

49 and
There were 300 students in the Archimedes auditorium classroom awaiting their master teacher. Two of Fred's best students, Betty and Alexander, were there.

The news had spread through the mathematics communities around the world that Fred was going to teach four upper division math courses for

the first time. Many people instantly changed their summer plans and headed to KITTENS University. They filled the rest of the seats in the auditorium. The same people would be attending all four classes.

Fred entered. He had on his customary bow tie that he liked to wear when he was teaching, but had forgotten to change out of his jogging shorts. No one noticed. He waved hello and the room became silent.

Good morning. (\leftarrow Fred’s speech is in this font.)
This was Fred's time of day. At about 6 p.m. each evening he would be heading to bed to get his needed nine hours of sleep that every six-yearold needs. One of the students had a thermos with a liter of strong hot coffee. After he had drunk a little, he had a quart.

Some mathematicians have claimed that virtually every part of math could be ultimately based on set theory. It's a good place to start our day.

You have had high school math so you already know that a set is just any collection of things. The set containing 8 and the number 8 can be written as $\{, 8\}$. Those curly parentheses are called braces. This is a left brace.

Fred wrote $\{$ on the blackboard.
$\{8,8\}$ and $\{8,8\}$ are the same set. The order in which you list the elements of the set doesn't matter.

Please don't list the same member* of a set more than once. Don't write $\left\{\&^{8}, 8,8\right.$. It makes it hard to count the number of elements in a set if there are duplicates in the listing.

The cardinality of a set is the number of members in the set. The cardinality of the empty set, $\}$, is zero. The empty set is sometimes called the null set and is sometimes represented by the symbol \varnothing.

A second way to list a set is to use set-builder notation. If I wanted to list all the prime numbers that are less than a thousand, I could write $\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97$, $101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199$, $211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331$, $337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457$, $461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599$, $601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733$,

[^3]

$739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877$, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997\} or, using setbuilder notation, write $\{\mathrm{x} \mid \mathrm{x}$ is a prime number less than 1000$\}$. This is read as, "The set of all x such that x is a prime number less than 1000. ."

If I were to write $\{\mathrm{y} \mid \mathrm{y}$ is a prime number less than 1000$\}$ that would be the same set.

We abbreviate "is a member of" by $\epsilon . \quad 8 \in\{(8) 8\}$
We abbreviate "is not a member of" by $\notin . \quad 9 \notin\{(8,8\}$
If we have two sets, A and B , we define the union of A and B , $A \cup B$, as $\{x \mid x \in A$ or $x \in B\}$.

The intersection of A and $B, A \cap B$, is defined as $\{x \mid x \in A$ and $x \in B\}$.
$O r$ in mathematics is the non-exclusive or. It means one or the other or both. Lawyers who want to indicate the non-exclusive or write and/or. Police who shout, "Stop or I'll shoot" are hopefully using the exclusive or. You don't want to stop and get shot.

The other thing we did in high school math was to draw Venn diagrams. We colored in circles.

$A \cup B$

We defined subset:
C is a subset of D, written $C \subset D$, if every element of C was in D.
In thirteen years of school-kindergarten through $12^{\text {th }}$ grade-this was set theory. In mathematics, this material is called naive set theory.*

The only thing wrong with naive set theory is that it contained contradictions. You can prove a statement is true, and you can prove its opposite is also true. Once that happens, the game is over. Everything falls apart.

In logic, if you know that statement P is true and you also know that not-P is true, then you can prove that anything is true. In symbols, $(\mathrm{P} \& \neg \mathrm{P}) \Rightarrow \mathrm{Q}$, where Q is any statement.**

[^4]

There are two famous theorems in logic. The first one is $(\mathrm{P} \& \neg \mathrm{P}) \Rightarrow \mathrm{Q}$. There shalt not be any contradictions.

The second one is called modus ponens. If you know that statement P implies statement Q and you know that statement P is true, then you can infer that statement Q is also true. $(\mathrm{P} \Rightarrow \mathrm{Q} \& \mathrm{P}) \Rightarrow \mathrm{Q}$.

If your mother says, "If you do that, I'll ground you," and if you do that, then you know you'll be grounded.

Creating proofs is the heart of upper division math. One big reason you spent a year studying high school geometry was to learn how to prove things. It wasn't to learn area formulas or that the base angles of an isosceles triangle are equal. In the eighth grade you already knew that the opposite sides of a parallelogram \square are equal. What you learned in geometry was how to prove that.

The rules for doing a proof are easy: (1) Every line must have a reason that justifies that line, and (2) the last line must be what you want to prove. The rules for most board games are much more complicated.

Here are some of the reasons we used in geometry. We use the same ones in upper division math.

1. Given
2. Postulate or axiom. (These words mean the same thing.)
3. Definition
4. Previously proven theorem
5. Beginning of an indirect proof
6. Contradiction in steps ___ and \qquad , and therefore the assumption in step ___ is false.
7. Cases

Reasons 5 and 6 are always paired together. In the beginning of an indirect proof, you assume the opposite of what you want to prove. Then you derive a contradiction. That contradiction indicates that your initial assumption was false.

How to Prove You Are Alive

1. Assume l'm dead.	1. Beginning of an indirect proof
2. 1 couldn't be speaking to you.	2. Definition of dead
3. 1 am talking to you.	3.
4. 1 am alive.	4. Contradiction in steps 2 and 3 and therefore
	the assumption in step 1 is false.

If the beginning assumptions (postulates or axioms) are true, then what you prove must also be true. Mathematics is a truth-generating machine.

Of course, if the postulates are inconsistent, then the whole system crashes, and you can prove anything.

Fred giggled a little at this point.
And what most geometry teachers and most geometry books fail to mention is that The high school geometry postulates are inconsistent.

A stunned silence fell over the audience. Everyone stopped writing and looked at Fred. Those who had not read Life of Fred: Geometry had no idea this was true. One of the students, Thomas, raised his hand and said, "I can't believe that. Everyone knows that high school geometry is true. Unless you show me a contradiction-one I can see and understand-"

No problem. What if I prove that every triangle is isosceles?
Thomas laughed to himself. And Fred began.

Statement

1. Any old triangle ABC.
2. Draw the angle bisector at C

3. Erect the perpendicular bisector of $\bar{A} \bar{B}$.

4. The angle bisector and the \perp bisector are parallel.
5. The angle bisector is \perp to $\overline{\mathrm{A}} \overline{\mathrm{B}}$.

A

Reason

1. Given
2. By the angle measurement postulate $\angle \mathrm{C}$ has a measurement between 0 and 180. And by the angle measurement postulate, there is an angle equal to half of that measurement. (Or, more simply, angle bisectors exist.)
3. Theorem: Every segment has a midpoint, and Theorem: You can erect a \perp to a line at any point on that line. (Or, more simply, every segment has a \perp bisector.)
4. Case 1 (One of two possibilities.)
5. Theorem: If a line (in this case $\overline{\mathrm{A}} \overline{\mathrm{B}}$) is \perp to one of two parallel lines, it is \perp to the other.

6. $\angle \mathrm{AHC} \cong \angle \mathrm{BHC}$
7. $\overline{\mathrm{CH}} \cong \overline{\mathrm{CH}}$
8. $\triangle \mathrm{AHC} \cong \triangle \mathrm{BHC}$
9. $\angle \mathrm{A} \cong \angle B$
10. $\triangle \mathrm{ABC}$ is isosceles.
11. The angle bisector and the \perp bisector are not parallel.
12. They intersect.

13. From the point of intersection, P , drop \perp s to $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$.
14. $\mathrm{PE}=\mathrm{PF}$

15. $\triangle \mathrm{APE} \cong \triangle \mathrm{BPF}$ $\triangle \mathrm{APD} \cong \triangle \mathrm{BPD}$

16. $\angle 1 \cong \angle 2 \quad \angle 3 \cong \angle 4$
17. $\angle \mathrm{CAB} \cong \angle \mathrm{CBA}$
18. $\triangle \mathrm{ABC}$ is isosceles.
19. Theorem: \perp lines form congruent right angles.
20. Theorem: Every segment is \cong to itself.
21. ASA
22. Definition of $\cong \triangle$.
23. Converse of the Isosceles Triangle theorem. (If the base $\angle \mathrm{s}$ are \cong, then the Δ is isosceles.)
24. Case 2 (The only other possibility.)
25. Definition of not parallel.
26. Theorem: From any point you can drop a perpendicular to a line.
27. Theorem: Any point on an \angle bisector is equidistant to the sides of the angle.
28. Any point on a \perp bisector is equidistant from the endpoints of the segment.
29. Hypotenuse-leg theorem. (In any pair of right $\mathbb{\Delta}$, if the hypotenuses and one pair of legs are \cong, then the Δ are \cong.)
30. Definition of $\cong \Delta$.
31. Angle Addition postulate
32. Converse of the Isosceles Triangle theorem. (If the base $\angle \mathrm{s}$ are \cong, then the Δ

This marks the end of a proof. It's the same as Q.E.D.

There is nothing wrong with this proof if you accept the postulates of high school geometry. The problem is that high school geometry allows this to happen. The postulates allow this contradiction (and many others) to happen.

Thomas's life changed at this point. He had seen the broader vistas of upper division math.

And naive set theory contains . . .
The entire classroom said, "No. No. No. It can't be. Impossible. Incredible. No way."

... contradictions.

The audience looked like they had been doused with a bucket of cold water.

Even with the little bit of set theory that I've described this morning, there's enough to find a contradiction. And once you have a contradiction, $\mathrm{P} \& \neg \mathrm{P}$, you can prove anything. $(\mathrm{P} \& \neg \mathrm{P}) \Rightarrow \mathrm{Q}$

Betty turned to Alexander and said the famous words from the "Wizard of Oz" movie: "I don't think we're in Kansas anymore." Everyone in the audience fastened their seatbelts.* Every eye was on Fred.

First of all, let's consider all those sets that are members of themselves. ${ }^{* *}$ Let A be the name of this set.

Then $A=\{x \mid x \in x\}$.
Is $\mathrm{A} \in \mathrm{A}$?
Obviously yes. It satisfies the definition: $\{\mathrm{x} \mid \mathrm{x} \in \mathrm{x}\}$.
Most sets do not contain themselves as members. For example, the set of natural numbers, $\{1,2,3,4,5, \ldots\}$. Or the set of all ducks.

Or the set of all fish that know the words to the fourth verse of our national anthem.
Another name for this last set is the empty set, $\{$ \}, or \varnothing.

Oh! thus be it ever, when freemen shall stand Between their loved homes and the war's desolation! Blest with victory and peace, may the heaven-rescued land Praise the Power that hath made and preserved us a nation.
Then conquer we must, when our cause it is just, And this be our motto: "In God is our trust." And the star-spangled banner in triumph shall wave O'er the land of the free and the home of the brave!

[^5]** Sets that contain themselves as members are fairly rare. Most sets do not contain
 sets inside the braces.

One set that is a member of itself is the set of all sets mentioned in this book.

Sets that do not contain themselves as members are called normal sets. Let's let B equal the set of all normal sets. $B=\{x \mid x \notin x\}$

Our hour is almost up. For Tuesday please create proofs for these two theorems.*

Theorem 1: If $B \in B$, then $B \notin B$. Theorem 2: If $B \notin B$, then $B \in B$.

After you have proven both of these, you have established that
$\mathrm{B} \in \mathrm{B}$ iff $\mathrm{B} \notin \mathrm{B}$.
(iff $=$ if and only if)
This is a contradiction.

> Note to readers:
> Answers to all of \mathcal{F} red's assignments are given in the back of this book.
> P lease do not just read the question and just turn to the answer. You won't learn very much if you do that.

> Write out your answers first.
> The fun part of this upper division math is solving the puzzles-not just learning "stuff."

On Tuesday we will go beyond naive set theory.
I will present a list of set theory axioms that do not contain any contradictions.

I'll see you tomorrow.

[^6]$2+2=4$-the proof. 58
abelian groups. 126
accumulation point. 66
addition in the natural numbers- definition 57
addition in the rational numbers129
addition of integers. 106
associative law in the natural numbers-the proof. . . 58
axiom of extensionality 46
axiom schema of restricted comprehension. 48
axiom schema of separation 48
axiom schema of specification48
axioms of topology. 38
binary operation 25
binary relation. 84
total. 84
braces. 16
brother and sister theorems forcontinuous functions 113
cardinality of a set. . . 16, 94, 114
Cartesian product. 93
circular definitions. 30, 46
closed sets. 85
closed sets axioms for a topology 86
closure of a set. 87
cluster point. 66
codomain. 93
commutative law for + in thenatural numbers-the proof.. 59
compact. 137, 138
complement of set. 86
complex numbers. 135
connect the midpoints of sides ofany quadrilateral.49
connected. 136, 137
continuous functions. 110-113
contrapositive statements 158
converse. 159
coset. 124,125
Crimean War. 39
cross multiplying. 200
cut. 132-134
cyclic group. 184
De Morgan's laws. 86, 175
dense. 62
derived point. 66
derived set. 85
discrete topology. 37
distributive property in the natural numbers. 80
division in the rational numbers 130
domain 93
empty set. 16
equality-six properties 25
equivalence class. 103
equivalence relation. 102
Euclid 32
every rational number is a repeating decimal. 62
every triangle is isosceles - proof19, 20
exponents in the natural numbers81
extendible cardinals 121
extraterritoriality. 39
factorial. 149

Ondex

Factory Act of 1850 37
fields. 127
first coordinate and second coordinate. 93
fourth verse of our national anthem. 21
function. 93, 178
fundamental principle of counting. 146
generator of a group 183
Grand Unified Theory. 117
group-definition 27
groups with four elements. 95-97
high school geometry axioms 67
inaccessible cardinals. 121
indescribable cardinals 121
index set. 87
indiscrete topology 38
ineffable cardinals 121
integers-definition. 105
intersection. 17, 68
isomorphic. 75-77
Klein four-group. 97-99
Kurt Gödel. 122
Lagrange's theorem 125
law of trichotomy 81
least element in the natural numbers. 83
left cancellation law. 71
left identity 27
left inverse. 27
less than in the integers 108,
109
less than in the natural numbers81
limit point 65
liters vs. quarts 16
logs. 168
magnetic pole reversal. 107
Marie Antoinette. 112
math induction. 33-35, 42
math theory-defined. 23, 30
metamathematics. 121, 122
modus ponens. 18
monoids. 126, 153
multiplication in the natural numbers. 80
multiplication of integers. 107
naive set theory. 17, 43
negative times a negative. 109
non-commutative group 1st example-ice cream cones51
2nd example- 2×2 matrices 54
3rd example-flipping ducks around. 54
non-exclusive or 17
normal sets. 22
null set. 16
one-to-one (1-1) functions. 93,166
onto. 75, 166
open covering. 137
open interval. 40
open sets. 37
ordered pair. 89-92
partition. 101, 102
Peano postulates 32
Pleiades constellation. 172
point of accumulation. 66
power set. 38, 146
propositional function. 47
Q is dense in \mathbb{R} 62

Ondex

range.
93, 166
rational numbers as repeating decimals. 134, 155
rational numbers Q..... 128, 129
reasons used in proofs. 18
right cancellation law... 27
rings. 126
rows vs. columns. 165
Schröder-Bernstein theorem
119, 120
proof. 193-198
schwa. 29
semigroups. 126, 153
separated. 136
set subtraction. 68
set-defined................. . . . 45
set-builder notation. 16, 17
sheet music for "I Sing". 50
standard topology for the real
numbers. 66
strong induction. 83
strongly compact cardinals. . 121
subgroup........... 99, 100, 181
subscriptsmanship. 138
subset. 17, 70, 162
subset axiom. 48
subtraction in the integers. . . 109
successor function. 31
supercompact cardinals. 121
symmetric group of degree 3 53
T spaces. 139
the real numbers R. 130-134
four approaches that won't work. 131
Theory Of Everything. 117 three possible meanings of $(5,8)$
total binary relations. 84
unary operation. 31
union. 17, 162
vacuously true. 173
vector spaces. 127
well-defined. 108
Zermelo, Fraenkel, Mirimanoff,
and Skolem. 45
ZF \#1, axiom of extensionality 46
ZF \#2, subset axiom. 48
ZF \#3, axiom of pairing. 68
ZF \#4, axiom of union. 69
ZF \#5, the power set axiom. . . 89
ZF \#6, axiom of replacement 114
ZF \#7, axiom of infinity..... 116
ZF \#8, axiom of foundation

To learn about other
Life of Fred books visit
FredGauss.com

[^0]: 146. Centroid and Moment of Inertia of Arc Let the $\operatorname{arc} A B$ of a curve be divided into n parts as show in Figure 180 , and let $\left(x_{k}, y_{k}\right)$ be any point on the k th segment of arc $\ddot{A} s_{k}$. In accordance with the definition of centroids for areas and volumes, we define the centroid of an arc as the point (x, \bar{y}) determined by the relations $\overline{s x}=\lim$ Ó $\mathrm{x}_{\mathrm{k}} \ddot{\mathrm{A}} s_{k}$ [etc.]
[^1]: *** Life is "slightly" unpredictable. This is my $35{ }^{\text {th }}$ book. Five of them have been more than 540 pages long. Life of Fred: Trig Expanded Edition was only 496 pages. Writing about Fred is a pure joy.

[^2]: ${ }^{*}$ I stole those two sentences from another book.

[^3]: * member of a set $=$ element of a set

[^4]: * Naive is pronounced nigh-EVE. Naive $=$ simple, unsophisticated. Coloring in circles is not really heavy-duty math.
 ** \& $=$ and $\quad \neg=$ not $\quad \Rightarrow=$ implies

[^5]: * All of the classrooms that Fred teaches in have seatbelts. Boring teachers should have classrooms with pillows.

[^6]: * A theorem is a statement that has been or can be proven.

