EXAMPLE Which of the numbers below is divisible by 28 ?

$$
10,540=2^{2} \cdot 5 \cdot 17 \cdot 31 \quad 12,936=2^{3} \cdot 3 \cdot 7^{2} \cdot 11 \quad 14,406=2 \cdot 3 \cdot 7^{4}
$$

The prime factorization of 28 is $2^{2} \cdot 7$. So, a number that is divisible by 28 must have at least two 2's and one 7 in its prime factorization.
$10,540=2^{2} \cdot 5 \cdot 17 \cdot 31$:
Since there is no 7 in the prime factorization of 10,540 , it is not divisible by 28 .

$$
12,936=2^{3} \cdot 3 \cdot 7^{2} \cdot 11:
$$

Since the prime factorization of 12,936 has at least two 2 's and one 7 , it is divisible by 28 .
$12,936=2^{3} \cdot 3 \cdot 7^{2} \cdot 11=(2 \cdot 2 \cdot 7) \cdot 2 \cdot 3 \cdot 7 \cdot 11=(28) \cdot 2 \cdot 3 \cdot 7 \cdot 11$.
$14,406=2 \cdot 3 \cdot 7^{4}:$
Since there is only one 2 in the prime factorization of 14,406 , it is not divisible by 28 .
So, the only number above that is divisible by 28 is 12,936 .

PRACTICE Answer each question below.

17. Circle every number below that is divisible by 54 .

$$
675=3^{3} \cdot 5^{2} \quad 882=2 \cdot 3^{2} \cdot 7^{2} \quad 1,782=2 \cdot 3^{4} \cdot 11 \quad 2,160=2^{4} \cdot 3^{3} \cdot 5
$$

18. Circle every number below that is divisible by 308 .

$$
3,360=2^{5} \cdot 3 \cdot 5 \cdot 7 \quad 4,312=2^{3} \cdot 7^{2} \cdot 11 \quad 6,468=2^{2} \cdot 3 \cdot 7^{2} \cdot 11 \quad 9,702=2 \cdot 3^{2} \cdot 7^{2} \cdot 11
$$

19. Circle every number below that is a factor of $4,095=3^{2} \cdot 5 \cdot 7 \cdot 13$.
27
91
105
225
315
20. Circle every number below that is a factor of $5,472=2^{5} \cdot 3^{2} \cdot 19$.
32
48
108
119
171

EXAMPLE
The prime factorization of 11,625 is $3 \cdot 5^{3} \cdot 31$. What is $11,625 \div 155$?

The prime factorization of 155 is $5 \cdot 31$.
We can use prime factorization to write 11,625 as the product of 155 and another integer:

$$
\begin{aligned}
11,625 & =3 \cdot 5^{3} \cdot 31 \\
& =3 \cdot 5 \cdot 5 \cdot 5 \cdot 31 \\
& =(5 \cdot 31) \cdot(3 \cdot 5 \cdot 5) \\
& =155 \cdot 75 .
\end{aligned}
$$

Since $11,625=155 \cdot 75$, we have $11,625 \div 155=75$.

PRACTICE \quad Answer each question below.
21. The prime factorization of 7,425 is $3^{3} \cdot 5^{2} \cdot 11$. What is $7,425 \div 75$?
21. \qquad
22. The prime factorization of 49,392 is $2^{4} \cdot 3^{2} \cdot 7^{3}$. What is $49,392 \div 196$?
22. \qquad
23. The prime factorization of 3,780 is $2^{2} \cdot 3^{3} \cdot 5 \cdot 7$. What number can be
23. \qquad multiplied by 135 to get 3,780 ?
24. Ivan divides 504 by its largest odd factor. What is the result?
24. \qquad
25. The prime factorization of 64,800 is $2^{5} \cdot 3^{4} \cdot 5^{2}$. What is the smallest
25. \qquad integer quotient Myrtle can get if she divides 64,800 by a power of 6 ?

26. Write the prime factorization of each perfect square below.
$81=$ \qquad
$1,600=$ \qquad
27. Write each prime factorization below as a perfect square.

$$
\text { Ex: } 2^{4} \cdot 5^{2}=20^{2} \quad 3^{2} \cdot 11^{2}=\quad 2^{8}=\quad 2^{4} \cdot 3^{2} \cdot 7^{2}=
$$

28. Circle every number below that is a perfect square.

$$
7,776=2^{5} \cdot 3^{5} \quad 3,136=2^{6} \cdot 7^{2} \quad 81,796=2^{2} \cdot 11^{2} \cdot 13^{2} \quad 444,771=3^{4} \cdot 17^{2} \cdot 19
$$

PRACTICE Answer each question below.
29. Circle each number below that is a perfect square when x and y are different prime numbers.
$x^{5} \cdot y^{5}$
x^{81}
$x^{2} \cdot y^{3}$
y^{12}
$x \cdot y$
$x^{4} \cdot y^{10}$
30. Grogg says that if a number is a perfect square, then its prime factorization includes only even exponents. Lizzie says that if the prime factorization of a number includes only even exponents, then the number is a perfect square. Who is correct: Grogg, Lizzie, or both? Explain.
31. Is 9^{3} a perfect square? If so, write 9^{3} as a perfect square. If not, explain why not.
32. What is the smallest positive integer n for which $180 n$ is a perfect
32. square?
33. The prime factorization of 6,174 is $2 \cdot 3^{2} \cdot 7^{3}$. What is the smallest
33. \qquad positive integer that can be multiplied by 6,174 to make a perfect square?
34. What is the largest perfect square factor of $23,520=2^{5} \cdot 3 \cdot 5 \cdot 7^{2}$?
34. \qquad

