Division as a Fraction EQUATIONS

EXAMPLE Circle the expression below that is equivalent to $18+24 \div (6-3)$. Then, evaluate the circled expression.

$$\frac{18+24}{6-3}$$

$$18 + \frac{24}{6 - 3}$$

$$18 + \frac{24}{6} - 3$$

$$\frac{18+24}{6-3}$$
 $18+\frac{24}{6-3}$ $18+\frac{24}{6}-3$ $\frac{18+24}{6}-3$

We can rewrite the division in $18+24 \div (6-3)$ as a fraction. Since division comes before addition in the order of operations, only 24 is divided by the grouped quantity (6-3). So, we have numerator 24 and denominator 6-3.

Therefore, $18+24 \div (6-3)$ is equivalent to $18+\frac{24}{6-3}$.

To evaluate, we compute the denominator of the fraction first, then divide, then add:

$$18 + \frac{24}{6 - 3} = 18 + \frac{24}{3}$$
$$= 18 + 8$$
$$= 26.$$

Connect each expression on the left with its equivalent expression on the right. Then, evaluate the matched expression on the right.

35.
$$(30-20) \div (5-3)$$

$$30 - \frac{20}{5} - 3 =$$

$$30 - \frac{20}{5-3} =$$

$$\frac{30-20}{5-3} =$$

$$\frac{30-20}{5}$$
 - 3 = _____

EXPRESSION Sivision as a Fraction

Remember, when evaluating expressions, we apply the following order of operations:

- 1. Grouped expressions (numerators, denominators, and expressions inside parentheses or absolute value bars)
- 2. Exponents
- 3. Multiplication and division (working from left to right)
- 4. Addition and subtraction (working from left to right)

PRACTICE Evaluate each expression below.

39.
$$\frac{6+3}{3}+2=$$

40.
$$5 - \frac{8}{6(4)} =$$

41.
$$3 \cdot \frac{7+9}{2} =$$

42.
$$\frac{3 \cdot 7 + 9}{2} =$$

43.
$$\frac{-3(4)}{(6-4)^2} = \underline{\hspace{1cm}}$$

44.
$$\frac{20^2}{2} + \frac{20}{2^2} + \left(\frac{20}{2}\right)^2 = \underline{\hspace{1cm}}$$

45.
$$17-2\left(\frac{1+11}{2\cdot 3}\right) =$$

46.
$$\frac{6^2}{7+5} \cdot \frac{7-6-5}{2} = \underline{}$$

47.
$$\frac{8(7-3)^2}{-(3-7)^3} = \underline{\hspace{1cm}}$$

48.
$$\left(\frac{5+7+9}{2^5-5^2}\right)^3 = \underline{\hspace{1cm}}$$

A *term* is a number, a variable, or a product of numbers and variables. Terms with the same variables are called *like terms*. For example, 3x and 6x are like terms, and -2y and y are like terms. However, 5x and 5y are not like terms.

Numbers without variables, such as 4 and -7, are also like terms.

In a **Like Terms Link** puzzle, each pair of like terms is connected by a path, as shown in the solved example below.

		5 <i>x</i>	2 <i>n</i>	-6
	8 <i>n</i>			
		3 <i>x</i>	d	
-d				
3				

			5 <i>x</i>	2 <i>n</i>	-6
		8 <i>n</i> •			
П			- 3 <i>x</i>	d	
-	d•				
(3 -				

Paths may not travel diagonally, cross another path, or pass *through* a square that contains a term.

Solve each Like Terms Link puzzle below. We recommend using a pencil.

Print more Like Terms Link puzzles at BeastAcademy.com.

49.

12 <i>a</i>			
	5 <i>c</i>	6 <i>b</i>	2 <i>a</i>
	b		6 <i>c</i>

50.

			7 <i>x</i>
	-8	4 y	
		-3 <i>x</i>	
8 <i>y</i>			4

Like terms

must also have the same

exponents.

For example, $4a^2$ and $3a^2$ are like terms, but $4a^2$ and 3a are not.

51.

	13 <i>t</i>	-5 <i>r</i>		
	-4 <i>s</i>			
-4 <i>r</i>			2 <i>t</i>	-5 <i>s</i>

52.

			11 <i>u</i>	
	11		2 <i>v</i>	- 2 <i>u</i>
		w		
			2	
		2w	-9 <i>v</i>	

EXAMPLE

Simplify the expression 4a+3a.

We can combine like terms to simplify expressions. 4a = a + a + a + a, and 3a = a + a + a. So, we have:

If we have four a's, and we add three more a's, that makes seven a's all together.

$$4a+3a = (a+a+a+a)+(a+a+a)$$

= $a+a+a+a+a+a+a$
= $7a$.

We factor a from each term. This gives

$$4a+3a = (4+3)a$$

= $7a$.

PRACTICE

Simplify each of the following expressions.

53.
$$5x+4x =$$

54.
$$10y-3y =$$

55.
$$3d+4d+5d =$$

56.
$$s+3s+15s =$$

57.
$$-3w + 12w =$$

58.
$$6p + (-p) =$$

59.
$$8c-14c+3c =$$

60.
$$-22g+36g-12g =$$

61.
$$12n-7n-5n =$$

62.
$$93k+47k-92k =$$

- **63.** Write a simplified expression for the perimeter of a square with side length s.
- 63. _____
- **64.** Write a simplified expression for the perimeter of a rectangle with width x and height 3x.
- 64. _____