

866-604-2357 (office)
866-332-8005 (fax) 1 www.CompuScholar.com

Java Programming

For AP Computer Science A
Course Syllabus and Planner

Course Overview
This AP Computer Science A class uses the CompuScholar Java Programming [1]
curriculum as the primary resource. It is taught as a one-year (two-semester) sequence and
covers all required topics in the “Computer Science A” Course Description published by the
College Board.

Students need to have typical computer usage skills prior to starting this course; other
introductory programming courses are not required. All required concepts are taught from
the ground up in a fun, step-by-step manner. The course includes uses a variety of multi-
media content such as full-color, interactive text, narrated instructional videos, and guided
classroom discussions. Strong emphasis is placed on hands-on programming labs to
demonstrate mastery of lesson concepts.

The CompuScholar Java Programming curriculum is fully aligned to the AP CS A
recommended Unit Sequence. This allows teachers to easily leverage the additional
material and practice questions in the AP Classroom.

Text and Resources

[1] Java Programming, CompuScholar, Inc. 2021, ISBN 978-1-946113-99-3

https://www.compuscholar.com/schools/courses/java/

The course material is designed to appeal to a variety of students, from traditional learners
who thrive on written text to audio-visual students who enjoy a multi-media format. All
content is delivered through an online system that allows students to work seamlessly both
in the classroom and at home.

http://www.compuscholar.com/
https://www.compuscholar.com/schools/courses/java/

866-604-2357 (office)
866-332-8005 (fax) 2 www.CompuScholar.com

Course Material
The course consists of the following student-facing elements:

• Instructional Videos – optional (not required), but enjoyed by many students as an
audio-visual introduction and re-enforcement of the lesson topics.

• Lesson Text – required reading, contains full topic details and live coding exercises
• Quizzes and Exams – multiple choice and automatically graded by our system
• Chapter Activities – hands-on projects, submitted for a grade

Teachers additionally have access to:

• Teacher’s Guides – for each lesson, with suggested classroom discussion questions
• Quiz and Exam Answer Keys – PDFs for quick reference
• Activity Solution Guides – fully coded activity solutions for each chapter activity

Programming Environment and Device Requirements
CompuScholar provides an in-browser Java coding environment. This online feature may be
used by students to complete all exercises and activities in all required AP chapters. When
using the online coding environment:

• No local software installation is needed to prepare for the AP exam.
• The AP material can be completed from any web browser on any device

(including Chromebooks and tablets).

Later, optional chapters contain a mixture of activities. AP teachers may select any of these
topics for students after the AP exam. Some optional activities can be done in
CompuScholar’s online environment, while others are completed using an external IDE.

When needed, CompuScholar recommends a locally installed JDK and Eclipse platform for
an external IDE (see chapters 28 and 29 for instructions). Teachers may also select any other
locally installed or online IDE. Device requirements for an optional, external IDE depend
on the IDE selected.

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 3 www.CompuScholar.com

Project Grading
Each chapter normally contains one or more hands-on, graded activities. The activities in all
required AP chapters are fully auto-graded by the CompuScholar system. Teachers
have complete control over the auto-graded results.

Some activities in later, optional chapters are free-form (creative) or completed in an external
IDE. The teacher is responsible for grading those creative or external projects.

Course Navigation
Chapter 1 contains computing, ethics and security topics recommended (but not tested) by
AP CS A and required by many state and national computer science curriculum standards.
AP teachers may opt to complete Chapter 1 in sequence, skip it entirely, or return to the
topics after the AP CS A exam.

Chapters 2 – 24 should be completed in sequence and cover all required topics on the AP
CS A exam, plus certain other highly recommended software skills. These chapters include
substantial, hands-on lab work in excess of the 20-hour minimum AP requirement. The mid-
term project in Chapter 17 may be omitted or postponed, if desired (no new skills).

Typical classes will finish all required AP content prior to the exam administration in May. We
recommend using remaining time before the exam to review the College Board’s published
practice exams and any other external source of practice FRQ and multiple choice problems.

Chapters 25 – 33 contain optional topics that are not required for AP CS A. Teachers may
review and select any of these optional topics for students as time permits after the AP CS A
exam. Some optional chapters require use of an external IDE and/or will be graded by the
teacher.

Supplemental Chapters 1 – 4 contain a variety of enrichment topics that may be required
by individual states to satisfy requirements for other coding or digital literacy courses. AP
teachers may optionally select any of these topics for students, time permitting.

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 4 www.CompuScholar.com

Course Planner
The following pages contain a suggested timeline for completing course content.
Correlations to the AP CS A recommended Unit Sequence are highlighted. Additional,
detailed mappings to AP CS A Learning Objectives and Essential Knowledge (LOEKs) are
appended at the end.

A typical school year consists of 36 calendar weeks or 180 days of school. After completing
the first 24 chapters, most classes will have several weeks left for AP exam prep, make-up
work and optional topics. Teachers can select from optional topics before and after the
exam, as time permits.

Each “day” listed below represents one typical day or class period of 45 – 60 minutes. In most
cases, students will complete one lesson per day (including the quiz), 1 day per lab, and 1
day per chapter test. Some classes may move faster or slower than the suggested pace.

Semester 1 Timeline
Days CompuScholar Chapter and Lab AP CS A Unit Sequence
6 Chapter 1: Computing Concepts

* Evolution of Computers
* Computer Hardware
* Computer Software
* Computer Ethics
* Computer Security

General curricular requirements
(N/A on AP Exam)
Schedule as time permits

Days CompuScholar Chapter and Lab AP CS A UNIT 1: Primitive Types
6 Chapter 2: Getting Started with Java

* Common Programming Languages
* The Java Platform
* Writing Your First Program
* Help and Reference Documentation
LAB: Shopping List

1.1 Why Programming? Why Java?
1.2 Variables and Data Types
1.3 Expressions and Assignment
Statements
1.4 Compound Assignment
Operators (shortcuts)
1.5 Casting and Ranges of Variables 5 Chapter 3: Data Types and Variables

* Primitive Data Types
* Variables
* Printing Data
LAB: Treasure Map

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 5 www.CompuScholar.com

5 Chapter 4: Working with Numbers
* Simple Math Operations
* Compound Assignments and Shortcuts
* Type Casting and Truncation
LAB: Magic Math

Days CompuScholar Chapter and Lab AP CS A: UNIT 2: Using Objects
7 Chapter 5: Introducing Objects

* Java Classes
* Reference Variables and Strings
* Properties and Constructors
* Calling Methods
* User Input with Scanner
LAB: Sketch Robot

2.1 Objects: Instances of Classes
2.2 Creating and Storing Objects
(Instantiation)
2.3 Calling a Void Method
2.4 Calling a Void Method with
Parameters
2.5 Calling a Non-void Method
2.6 String Objects: Concatenation,
Literals, and More
2.7 String Methods
2.8 Wrapper Classes: Integer and
Double
2.9 Using the Math Class

5 Chapter 6: Working with Strings
* Comparing Strings
* Common String Operations
* Formatting and Building Strings
LAB: String Theory

6 Chapter 7: Numbering Systems and Java
Math
* Java Wrapper Classes & Numeric
Conversion
* Numbers in Binary, Octal and Hex
* Java Math Class
* Numeric Limitations
LAB: Math Factory

Days CompuScholar Chapter and Lab AP CS A: UNIT 3: Boolean
Expressions and if Statements

6 Chapter 8: Logic and Decision-Making
* Logical Expressions and Relational
Operators
* Making Decisions with if()
* Using "else-if" and "else"
* The "switch" Statement
LAB: Banking System

3.1 Boolean Expressions
3.2 if Statements and Control Flow
3.3 if-else Statements
3.4 else if Statements
3.5 Compound Boolean
Expressions
3.6 Equivalent Boolean Expressions

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 6 www.CompuScholar.com

5 Chapter 9: More Complex Logic
* Comparing Objects and References
* Compound Expressions
* Boolean Algebra and Truth Tables
LAB: Wild Card

3.7 Comparing Objects

5 Chapter 10: Handling Exceptions
* Understanding Exceptions
* Catching Exceptions
* Validating User Input
LAB: Calculator Madness

Highly recommended skills as
students begin to produce more
complex code.

4 Chapter 11: Debugging
* Finding Runtime Errors
* Debugger Concepts
LAB: Bug Hunt

Days CompuScholar Chapter and Lab AP CS A: UNIT 4: Iteration
6 Chapter 12: Iteration

* For Loops
* While Loops
* Continue, Break and Return
* Nested Loops
LAB: Fun Factorials

4.1 while Loops
4.2 for Loops
4.3 Developing Algorithms Using
Strings
4.4 Nested Iteration
4.5 Informal Code Analysis

6 Chapter 13: Algorithms
* Designing with Flowcharts
* Writing Pseudocode
* Common Mathematical Algorithms
* Common String Algorithms
LAB: Meal Time

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 7 www.CompuScholar.com

Days CompuScholar Chapter and Lab AP CS A: UNIT 5: Writing Classes
7 Chapter 14: Creating Java Classes

* Object-Oriented Concepts
* Defining Classes and Packages
* Class Properties
* Constructors
* Class Methods
LAB: Dog House

5.1 Anatomy of a Class
5.2 Constructors
5.3 Documentation with Comments
5.4 Accessor Methods
5.5 Mutator Methods
5.6 Writing Methods
5.7 Static Variables and Methods
5.8 Scope and Access
5.9 this Keyword
5.10 Ethical and Social Implications
of Computing Systems (Not on AP
Exam) - See Chapter 1

7 Chapter 15: Working with Methods

* Documentation and Design
* Variable Scope and Access
* Data Encapsulation
* Method Overloading
* Object Interfaces
LAB: Let's Go Racing!

5 Chapter 16: Static Concepts
* Static Properties
* Static Methods
* Static, Object and "this" References
LAB: Art School

4 Chapter 17: Mid-Term Project
* Introducing the "Remote Control" Project
LAB: Creating the Schedule
LAB: Building a Television
LAB: Defining the Remote

Schedule as time permits (no new
skills)

84 -
94

Total Days (depending on scheduling of Chapters 1 and 17)

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 8 www.CompuScholar.com

Semester 2 Timeline
Days CompuScholar Chapter and Lab AP CS A UNIT 6: Array
7 Chapter 18: 1D Arrays

* Array Concepts
* Array Traversal
* Iterators and Enhanced for() loops
* Array Algorithms
* More Array Algorithms
LAB: Whack-A-Mole

6.1 Array Creation and Access
6.2 Traversing Arrays
6.3 Enhanced for Loop for Arrays
6.4 Developing Algorithms Using
Arrays

Days CompuScholar Chapter and Lab AP CS A UNIT 7: ArrayList
6 Chapter 19: Lists and ArrayLists

* Java Lists
* ArrayLists
* Iterators and Enhanced for() Loops
* Algorithms with ArrayLists
LAB: Train Yard Jumble

7.1 Introduction to ArrayList
7.2 ArrayList Methods
7.3 Traversing ArrayLists
7.4 Developing Algorithms Using
ArrayLists
7.5 Searching
7.6 Sorting
7.7 Ethical Issues Around Data
Collection (see Chapter 1)

7 Chapter 20: Searching and Sorting

* Bubble Sort
* Selection Sort
* Insertion Sort
* Sequential and Binary Searches
LAB: Ducks in a Row

Days CompuScholar Chapter and Lab AP CS A UNIT 8: 2D Array
6 Chapter 21: 2D Arrays

* 2D Arrays
* Traversal and Ordering
* Array of Arrays
* 2D Array Algorithms
LAB: Gold Rush

8.1 2D Arrays
8.2 Traversing 2D Arrays

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 9 www.CompuScholar.com

Days CompuScholar Chapter and Lab AP CS A UNIT 9: Inheritance
5 Chapter 22: Inheritance

* Superclass and Subclass Concepts
* Subclass Constructors
* Using Superclass and Subclass
References
LAB: Lab Rats

9.1 Creating Superclasses and
Subclasses
9.2 Writing Constructors for
Subclasses
9.3 Overriding Methods
9.4 super Keyword
9.5 Creating References Using
Inheritance Hierarchies
9.6 Polymorphism
9.7 Object Superclass

6 Chapter 23: Polymorphism
* Overriding Superclass Methods
* Abstract Classes and Methods
* Using Superclass Features with "super"
* The "Object" Superclass
LAB: Social Ladder

Days CompuScholar Chapter and Lab AP CS A UNIT 10: Recursion
5 Chapter 24: Recursion

* Recursion
* Recursive Binary Search
* Merge Sort
LAB: File Explorer

10.1 Recursion
10.2 Recursive Searching and
Sorting

42 Total Days in Semester 2 (all required AP CS A topics complete at this point)

Classes who complete the first 24 chapters at this point have spent approximately 134 days
and covered all required AP CS A topics. Remaining class time should be spent in preparation
for the AP exam and in optional, teacher-selected topics from Chapters 25 – 33,
Supplemental Chapters, and any earlier chapters deferred until after the exam.

Please see below for information on the optional chapters and Supplemental topics.

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 10 www.CompuScholar.com

The following table suggests the timeline needed for each optional or supplemental
chapter, along with notes as to the programming environment and grading approach. There
are more “optional” chapters available than students can complete in a single year, so
teachers can pick topics as time permits!

Days CompuScholar Chapter and Lab Notes
5 Chapter 25: File Access

* Data Streams
* Reading and Writing Text Data
* Reading and Writing Binary Data
LAB: Address CSV

CompuScholar online environment,
project auto-graded by our system

5 Chapter 26: Object Composition and
Copying
* Functional Decomposition
* Composite Classes
* Copying Objects
LAB: Designing a Composite Class

Teacher-graded project

10-
15

Chapter 27: Team Project
* Design Processes and Teamwork
* Requirements and Design Documents
LAB: Team Project Requirements
LAB: Project Design
LAB: Team Project Implementation
* Testing Your Code
LAB: Team Project Testing

CompuScholar online environment
or external IDE, teacher-graded
project

3 Chapter 28: Running Java Locally
* Installing the JDK
* Local Source Code
* Building and Running from the
Command Line

“How-to” chapter to create local
development environment

4 Chapter 29: The Eclipse IDE
* Introducing Eclipse
* Eclipse Java IDE Walk-through
* Creating an Eclipse Project
* The Eclipse Debugger

“How-to” chapter to install and use
a local IDE

http://www.compuscholar.com/

866-604-2357 (office)
866-332-8005 (fax) 11 www.CompuScholar.com

6 Chapter 30: Graphical Java Programs
* Java Swing
* Creating a Simple Window
* Event-Driven Programming
* Layout Managers
LAB: Phone Dialer

Requires external IDE (e.g. Eclipse)
with Java Swing support. Teacher-
graded projects.

5 Chapter 31: Swing Input Controls
* Text and Numeric Input
* List Input
* Option Input
LAB: Pizza Place

5 Chapter 32: Vector and Bitmap Images
* Screen Coordinates
* Drawing Shapes
* Drawing Images
LAB: Sky Art

4 Chapter 33: Program Efficiency
* Algorithm Performance (Big-O)
* Measuring Sorting Efficiency
LAB: Comparison of Sorting Algorithms

External IDE, teacher-graded project

12 Supplemental Chapter 1: Enrichment
Topics

See individual lessons and activities
for programming environment and
grading approach.

8 Supplemental Chapter 2: Software and
Industry

Offline work, teacher-graded
projects

4 Supplemental Chapter 3: Computers
and Modern Society

Offline work, teacher-graded
projects

6 Supplemental Chapter 4: Computer
Networking

Offline work, teacher-graded
projects

The following pages contain detailed cross-reference tables that map every AP
Computer Science A topic and essential knowledge to specific course chapters and
lessons. For convenience, these cross-references are also available as a separate
document at the following online location:

https://www.compuscholar.com/docs/java/AP_Exam_Cross_Reference.pdf

http://www.compuscholar.com/
https://www.compuscholar.com/docs/java/AP_Exam_Cross_Reference.pdf

Copyright, CompuScholar, Inc.

Course Title:
Grade Level: 9th - 12th grades
Standards Version: Fall 2020
Standards Link:

Course Title:
Course ISBN: 978-1-946113-99-3
Course Year: 2021

AP Course Description

AP Lab Requirements
This course easily meets and

exceeds the 20-hour minimum
lab requirement with hands-on

lesson exercises and labs in
every chapter.

AP Topics and Essential Knowledge

CITATION(S)

Chapter 3, Lesson 3

Chapter 3, Lesson 3

Learning Objectives and Essential Knowledge (LOEK)

CompuScholar, Inc.

Alignment to the College Board AP Computer Science A

AP Course Details:
AP Computer Science A

ap-computer-science-a-course-and-exam-description.pdf

CompuScholar Course Details:
Java Programming

Note 1: Citation(s) listed may represent a subset of the instances where objectives are met throughout the
course.

Topic 1.1: Why Programming? Why Java?

Note 2: Citation(s) for a "Lesson" refer to the "Lesson Text" elements and associated "Activities" within the
course, unless otherwise noted. The "Instructional Video" components are supplements designed to introduce
or re-enforce the main lesson concepts, and the Lesson Text contains full details.

This course teaches students the fundamentals of the Java programming language and covers all required topics
defined by the College Board's AP Computer Science A course description.

The AP Computer Science A course must include a minimum of 20 hours of
hands-on structured-lab experiences to engage students in individual or
group problem solving.

UNIT 1: Primitive Types

MOD-1.A.1 - System.out.print and System.out.println display information on
the computer monitor.
MOD-1.A.2 - System.out.println moves the cursor to a new line after the
information has been displayed, while System.out.print does not.

https://www.compuscholar.com/schools/courses/java/ Page 1 of 18

https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-and-exam-description.pdf
https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-and-exam-description.pdf

Copyright, CompuScholar, Inc.

Chapter 2, Lesson 3

Chapter 3, Lesson 1

Chapter 3, Lesson 1

Chapter 3, Lesson 1

Chapter 3, Lesson 1

Chapter 3, Lesson 1

Chapter 3, Lesson 1

Chapter 3, Lesson 2

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 2

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 1

Chapter 4, Lesson 2

VAR-1.B.3 - The primitive data types used in this course define the set of
operations for numbers and Boolean values.
VAR-1.C.1 - The three primitive data types used in this course are int, double,
and boolean.

VAR-1.A.1 - A string literal is enclosed in double quotes.

VAR-1.C.2 - Each variable has associated memory that is used to hold its
value.

VAR-1.B.1 - A type is a set of values (a domain) and a set of operations on
them.

VAR-1.B.2 - Data types can be categorized as either primitive or reference.

VAR-1.C.3 - The memory associated with a variable of a primitive type holds
an actual primitive value.
VAR-1.C.4 - When a variable is declared final, its value cannot be changed
once it is initialized.

TOPIC 1.2: Variables and Data Types

TOPIC 1.3: Expressions and Assignment Statements

CON-1.B.1 - The assignment operator (=) allows a program to initialize or
change the value stored in a variable. The value of the expression on the
right is stored in the variable on the left.
CON-1.B.2 - During execution, expressions are evaluated to produce a single
value.
CON-1.B.3 - The value of an expression has a type based on the evaluation of
the expression.

CON-1.A.1 - A literal is the source code representation of a fixed value

CON-1.A.2 - Arithmetic expressions include expressions of type int and
double.

CON-1.A.3 - The arithmetic operators consist of +, −, *, /, and %

CON-1.A.4 - An arithmetic operation that uses two int values will evaluate to
an int value.
CON-1.A.5 - An arithmetic operation that uses a double value will evaluate to
a double value.

CON-1.A.6 - Operators can be used to construct compound expressions.

CON-1.A.7 - During evaluation, operands are associated with operators
according to operator precedence to determine how they are grouped.
CON-1.A.8 - An attempt to divide an integer by zero will result in an
ArithmeticException to occur.

CON-1.B.4 - Compound assignment operators (+=, −=, *=, /=, %=) can be used
in place of the assignment operator.

TOPIC 1.4: Compound Assignment Operators

https://www.compuscholar.com/schools/courses/java/ Page 2 of 18

Copyright, CompuScholar, Inc.

Chapter 4, Lesson 2

Chapter 4, Lesson 3

Chapter 4, Lesson 3

Chapter 4, Lesson 3

Chapter 4, Lesson 3

Chapter 3, Lesson 1
Chapter 7, Lesson 4

Chapter 3, Lesson 1
Chapter 7, Lesson 4

CITATION(S)

Chapter 5, Lesson 1

Chapter 5, Lesson 1

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

MOD-1.D.1 - Every object is created using the keyword new followed by a
call to one of the class’s constructors.
MOD-1.D.2 - A class contains constructors that are invoked to create objects.
They have the same name as the class.

TOPIC 2.1: Objects: Instances of Classes

UNIT 2: Using Objects

CON-1.C.6 - If an expression would evaluate to an int value outside of the
allowed range, an integer overflow occurs. This could result in an incorrect
value within the allowed range.

CON-1.B.5 - The increment operator (++) and decrement operator (−−) are
used to add 1 or subtract 1 from the stored value of a variable or an array
element. The new value is assigned to the variable or array element.

CON-1.C.1 - The casting operators (int) and (double) can be used to create a
temporary value converted to a different data type.
CON-1.C.2 - Casting a double value to an int causes the digits to the right of
the decimal point to be truncated.
CON-1.C.3 - Some programming code causes int values to be automatically
cast (widened) to double values.

TOPIC 1.5: Casting and Ranges of Variables

CON-1.C.4 - Values of type double can be rounded to the nearest integer by
(int)(x + 0.5) or (int)(x – 0.5) for negative numbers.
CON-1.C.5 - Integer values in Java are represented by values of type int,
which are stored using a finite amount (4 bytes) of memory. Therefore, an
int value must be in the range from Integer.MIN_VALUE to
Integer.MAX_VALUE inclusive.

MOD-1.C.6 - Parameters are passed using call by value. Call by value
initializes the formal parameters with copies of the actual parameters.

MOD-1.C.5 - The actual parameters passed to a constructor must be
compatible with the types identified in the formal parameter list.

MOD-1.B.1 - An object is a specific instance of a class with defined attributes.

MOD-1.B.2 A class is the formal implementation, or blueprint, of the
attributes and behaviors of an object.

MOD-1.C.1 - A signature consists of the constructor name and the parameter
list.
MOD-1.C.2 - The parameter list, in the header of a constructor, lists the types
of the values that are passed and their variable names. These are often
referred to as formal parameters.
MOD-1.C.3 - A parameter is a value that is passed into a constructor. These
are often referred to as actual parameters.
MOD-1.C.4 - Constructors are said to be overloaded when there are multiple
constructors with the same name but a different signature.

TOPIC 2.2: Creating and Storing Objects (Instantiation)

https://www.compuscholar.com/schools/courses/java/ Page 3 of 18

Copyright, CompuScholar, Inc.

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 2

Chapter 5, Lesson 2

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 5, Lesson 4

Chapter 6, Lesson 1

MOD-1.D.3 - Existing classes and class libraries can be utilized as appropriate
to create objects.
MOD-1.D.4 - Parameters allow values to be passed to the constructor to
establish the initial state of the object.

MOD-1.E.7 - Void methods do not have return values and are therefore not
called as part of an expression.
MOD-1.E.8 - Using a null reference to call a method or access an instance
variable causes a NullPointerException to be thrown.

VAR-1.D.1 - The keyword null is a special value used to indicate that a
reference is not associated with any object.
VAR-1.D.2 - The memory associated with a variable of a reference type holds
an object reference value or, if there is no object, null. This value is the
memory address of the referenced object.

MOD-1.E.1 - An object’s behavior refers to what the object can do (or what
can be done to it) and is defined by methods.
MOD-1.E.2 - Procedural abstraction allows a programmer to use a method by
knowing what the method does even if they do not know how the method
was written.

MOD-1.E.4 - A method or constructor call interrupts the sequential execution
of statements, causing the program to first execute the statements in the
method or constructor before continuing. Once the last statement in the
method or constructor has executed or a return statement is executed, flow
of control is returned to the point immediately following where the method
or constructor was called

MOD-1.E.5 - Non-static methods are called through objects of the class.

MOD-1.E.6 - The dot operator is used along with the object name to call non-
static methods.

TOPIC 2.3: Calling a Void Method

TOPIC 2.4: Calling a Void Method with Parameters
MOD-1.F.1 - A method signature for a method with parameters consists of
the method name and the ordered list of parameter types.

MOD-1.F.3 - Methods are said to be overloaded when there are multiple
methods with the same name but a different signature.

MOD-1.G.1 Non-void methods return a value that is the same type as the
return type in the signature. To use the return value when calling a non-void
method, it must be stored in a variable or used as part of an expression.

VAR-1.E.1 - String objects can be created by using string literals or by calling
the String class constructor.

MOD-1.E.3 - A method signature for a method without parameters consists
of the method name and an empty parameter list.

MOD-1.F.2 - Values provided in the parameter list need to correspond to the
order and type in the method signature.

TOPIC 2.5: Calling a Non-void Method

TOPIC 2.6: String Objects: Concatenation, Literals, and More

https://www.compuscholar.com/schools/courses/java/ Page 4 of 18

Copyright, CompuScholar, Inc.

Chapter 6, Lesson 2

Chapter 6, Lesson 3

Chapter 6, Lesson 3

Chapter 6, Lesson 3

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 7, Lesson 1

See Below

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 6, Lesson 2

Chapter 7, Lesson 1

VAR-1.E.9 - The String class is part of the java.lang package. Classes in the
java.lang package are available by default.
VAR-1.E.10 - A String object has index values from 0 to length– 1. Attempting
to access indices outside this range will result in an
IndexOutOfBoundsException.

VAR-1.E.2 - String objects are immutable, meaning that String methods do
not change the String object.
VAR-1.E.3 - String objects can be concatenated using the + or += operator,
resulting in a new String object.

VAR-1.E.6 - Application program interfaces (APIs) and libraries simplify
complex programming tasks

VAR-1.E.4 - Primitive values can be concatenated with a String object. This
causes implicit conversion of the values to String objects.
VAR-1.E.5 - Escape sequences start with a \ and have a special meaning in
Java. Escape sequences used in this course include \”, \\, and \n.
TOPIC 2.7: String Methods

VAR-1.E.12 - The following String methods and constructors—including what
they do and when they are used—are part of the Java Quick Reference:

String(String str) — Constructs a new String object that represents the
same sequence of characters as str
int length() — Returns the number of characters in a String object

int indexOf(String str) — Returns the index of the first occurrence of
str; returns -1 if not found

TOPIC 2.8: Wrapper Classes: Integer and Double
VAR-1.F.1 - The Integer class and Double class are part of the java.lang
package.

VAR-1.E.11 - A String object can be concatenated with an object reference,
which implicitly calls the referenced object’s toString method.

VAR-1.E.7 - Documentation for APIs and libraries are essential to
understanding the attributes and behaviors of an object of a class.

VAR-1.E.8 - Classes in the APIs and libraries are grouped into packages.

int compareTo(String other)— Returns a value < 0 if this is less than
other; returns zero if this is equal to other; returns a value > 0 if this is
greater than other

boolean equals(String other)— Returns true if this is equal to other;
returns false otherwise

VAR-1.E.13 - A string identical to the single element substring at position
index can be created by calling substring(index, index + 1).

String substring(int from, int to) — Returns the substring beginning at
index from and ending at index to - 1
String substring(int from)— Returns substring(from, length())

https://www.compuscholar.com/schools/courses/java/ Page 5 of 18

Copyright, CompuScholar, Inc.

See below

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

See below

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 3

Chapter 7, Lesson 3

Chapter 7, Lesson 3

See below

Chapter 7, Lesson 3

Chapter 7, Lesson 3
double abs(double x) — Returns the absolute value of a double value

VAR-1.F.2 - The following Integer methods and constructors — including
what they do and when they are used—are part of the Java Quick Reference:

Integer(int value) — Constructs a new Integer object that represents
the specified int value
Integer.MIN_VALUE — The minimum value represented by an int or
Integer
Integer.MAX_VALUE — The maximum value represented by an int or
Integer
int intValue() — Returns the value of this Integer as an int

VAR-1.F.3 - The following Double methods and constructors — including
what they do and when they are used—are part of the Java Quick Reference:

Double(double value) —Constructs a new Double object that
represents the specified double value

double doubleValue() — Returns the value of this Double as a double

VAR-1.F.4 - Autoboxing is the automatic conversion that the Java compiler
makes between primitive types and their corresponding object wrapper
classes. This includes converting an int to an Integer and a double to a
Double.
VAR-1.F.5 - The Java compiler applies autoboxing when a primitive value is:
* Passed as a parameter to a method that expects an object of the
corresponding wrapper class.
* Assigned to a variable of the corresponding wrapper class.
VAR-1.F.6 - Unboxing is the automatic conversion that the Java compiler
makes from the wrapper class to the primitive type. This includes converting
an Integer to an int and a Double to a double.
VAR-1.F.7 - The Java compiler applies unboxing when a wrapper class object
is:
* Passed as a parameter to a method that expects a value of the
corresponding primitive type.
* Assigned to a variable of the corresponding primitive type.

MOD-1.H.1 - Static methods are called using the dot operator along with the
class name unless they are defined in the enclosing class.

CON-1.D.1 - The Math class is part of the java.langpackage.

CON-1.D.2 - The Math class contains only static methods.

CON-1.D.3 - The following static Math methods—including what they do and
when they are used—are part of the Java Quick Reference:

int abs(int x) — Returns the absolute value of an int value

TOPIC 2.9: Using the Math Class

https://www.compuscholar.com/schools/courses/java/ Page 6 of 18

Copyright, CompuScholar, Inc.

Chapter 7, Lesson 3

Chapter 7, Lesson 3

Chapter 7, Lesson 3

Chapter 7, Lesson 3

CITATION(S)

Chapter 8, Lesson 1

Chapter 8, Lesson 1

Chapter 8, Lesson 1

Chapter 8, Lesson 2

Chapter 8, Lesson 2

Chapter 8, Lesson 2

Chapter 8, Lesson 3

Chapter 8, Lesson 3

Chapter 8, Lesson 3

Chapter 9, Lesson 2

Chapter 9, Lesson 2

double pow(double base, double exponent) — Returns the value of
the first parameter raised to the power of the second parameter

double random() — Returns a double value greater than or equal to
0.0 and less than 1.0

UNIT 3: Boolean Expressions and if Statements

TOPIC 3.1: Boolean Expressions

TOPIC 3.4: elseif Statements

double sqrt(double x) — Returns the positive square root of a double
value

CON-1.D.4 - The values returned from Math.random can be manipulated to
produce a random int or double in a defined range.

CON-1.F.1 - Logical operators !(not), &&(and), and ||(or) are used with
Boolean values. This represents the order these operators will be evaluated.
CON-1.F.2 - An expression involving logical operators evaluates to a Boolean
value.

CON-1.E.1 - Primitive values and reference values can be compared using
relational operators (i.e., == and !=).
CON-1.E.2 - Arithmetic expression values can be compared using relational
operators (i.e., <, >, <=, >=).
CON-1.E.3 - An expression involving relational operators evaluates to a
Boolean value.

CON-2.A.1 - Conditional statements interrupt the sequential execution of
statements.
CON-2.A.2 - if statements affect the flow of control by executing different
statements based on the value of a Boolean expression.
CON-2.A.3 - A one-way selection (if statement) is written when there is a set
of statements to execute under a certain condition. In this case, the body is
executed only when the Boolean condition is true.

CON-2.A.4 - A two-way selection is written when there are two sets of
statements— one to be executed when the Boolean condition is true, and
another set for when the Boolean condition is false. In this case, the body of
the “if” is executed when the Boolean condition is true, and the body of the
“else” is executed when the Boolean condition is false.

CON-2.A.5 - A multi-way selection is written when there are a series of
conditions with different statements for each condition. Multi-way selection
is performed using if-else-if statements such that exactly one section of code
is executed based on the first condition that evaluates to true.

CON-2.B.1 - Nested if statements consist of if statements within if
statements.

TOPIC 3.2: if Statements and Control Flow

TOPIC 3.3: if-else Statements

TOPIC 3.5: Compound Boolean Expressions

https://www.compuscholar.com/schools/courses/java/ Page 7 of 18

Copyright, CompuScholar, Inc.

Chapter 9, Lesson 2

Chapter 9, Lesson 3

Chapter 9, Lesson 3

Chapter 9, Lesson 3

Chapter 9, Lesson 1

Chapter 9, Lesson 1

Chapter 9, Lesson 1

Chapter 9, Lesson 1

CITATION(S)

Chapter 12, Lesson 2

Chapter 12, Lesson 2

Chapter 12, Lesson 2

Chapter 12, Lesson 2

Chapter 12, Lesson 3

Chapter 13, Lessons 3, 4

Chapter 13, Lesson 3
Chapter 18, Lesson 4
Chapter 19, Lesson 2

CON-2.D.2 - There are standard algorithms to:
* Determine a minimum or maximum value
* Compute a sum, average, or mode

CON-2.C.2 - In loops, the Boolean expression is evaluated before each
iteration of the loop body, including the first. When the expression evaluates
to true, the loop body is executed. This continues until the expression
evaluates to false, whereupon the iteration ceases.
CON-2.C.3 - A loop is an infinite loop when the Boolean expression always
evaluates to true.
CON-2.C.4 - If the Boolean expression evaluates to false initially, the loop
body is not executed at all.

UNIT 4: Iteration

TOPIC 4.1: while Loops

TOPIC 3.7: Comparing Objects

TOPIC 3.6: Equivalent Boolean Expressions

CON-2.D.1- There are standard algorithms to:
* Identify if an integer is or is not evenly divisible by another integer
* Identify the individual digits in an integer
* Determine the frequency with which a specific criterion is met

CON-2.C.5 - Executing a return statement inside an iteration statement will
halt the loop and exit the method or constructor.

CON-1.H.4 - Often classes have their own equals method, which can be used
to determine whether two objects of the class are equivalent.

CON-2.C.1 - Iteration statements change the flow of control by repeating a
set of statements zero or more times until a condition is met.

CON-1.F.3 - When the result of a logical expression using && or || can be
determined by evaluating only the first Boolean operand, the second is not
evaluated. This is known as short-circuited evaluation.

CON-1.G.1 - De Morgan’s Laws can be applied to Boolean expressions.

CON-1.G.2 - Truth tables can be used to prove Boolean identities.

CON-1.G.3 - Equivalent Boolean expressions will evaluate to the same value
in all cases.

CON-1.H.1 - Two object references are considered aliases when they both
reference the same object.
CON-1.H.2 - Object reference values can be compared, using == and !=, to
identify aliases
CON-1.H.3 - A reference value can be compared with null, using == or !=, to
determine if the reference actually references an object.

https://www.compuscholar.com/schools/courses/java/ Page 8 of 18

Copyright, CompuScholar, Inc.

Chapter 12, Lesson 1

Chapter 12, Lesson 1

Chapter 12, Lesson 1

Chapter 12, Lesson 2

Chapter 12, Lesson 2

Chapter 13, Lesson 4

Chapter 12, Lesson 4

Chapter 12, Lesson 4

Chapter 12, Lesson 1

CITATION(S)

Chapter 14, Lesson 1

Chapter 14, Lesson 1

Chapter 14, Lesson 2

Chapter 14, Lesson 3

Chapter 14, Lesson 4

Chapter 14, Lesson 5

CON-2.E.1 - There are three parts in a for loop header: the initialization, the
Boolean expression, and the increment. The increment statement can also
be a decrement statement.
CON-2.E.2 - In a for loop, the initialization statement is only executed once
before the first Boolean expression evaluation. The variable being initialized
is referred to as a loop control variable.
CON-2.E.3 - In each iteration of a for loop, the increment statement is
executed after the entire loop body is executed and before the Boolean
expression is evaluated again.
CON-2.E.4 - A for loop can be rewritten into an equivalent while loop and
vice versa.
CON-2.E.5 - “Off by one” errors occur when the iteration statement loops
one time too many or one time too few.

CON-2.F.1 - There are standard algorithms that utilize String traversals to:
* Find if one or more substrings has a particular property
* Determine the number of substrings that meet specific criteria
* Create a new string with the characters reversed

CON-2.G.1 - Nested iteration statements are iteration statements that
appear in the body of another iteration statement.

MOD-2.A.5 - Constructors are designated public.

MOD-2.A.6 - Access to behaviors can be internal or external to the class.
Therefore, methods can be designated as either public or private.

TOPIC 5.1: Anatomy of a Class

TOPIC 4.2: for Loops

TOPIC 4.3: Developing Algorithms Using Strings

TOPIC 4.4: Nested Iteration

TOPIC 4.5: Informal Code Analysis

MOD-2.A.1 - The keywords public and private affect the access of classes,
data, constructors, and methods.

UNIT 5: Writing Classes

CON-2.G.2 - When a loop is nested inside another loop, the inner loop must
complete all its iterations before the outer loop can continue.

CON-2.H.1 - A statement execution count indicates the number of times a
statement is executed by the program.

MOD-2.A.2 - The keyword private restricts access to the declaring class,
while the keyword public allows access from classes outside the declaring

MOD-2.A.3 - Classes are designated public.

MOD-2.A.4 - Access to attributes should be kept internal to the class.
Therefore, instance variables are designated as private.

https://www.compuscholar.com/schools/courses/java/ Page 9 of 18

Copyright, CompuScholar, Inc.

Chapter 14, Lesson 3

Chapter 14, Lesson 3

Chapter 14, Lesson 3

Chapter 14, Lesson 3

Chapter 14, Lesson 3

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 15, Lesson 1

Chapter 15, Lesson 1

Chapter 15, Lesson 1

Chapter 15, Lesson 1

Chapter 15, Lesson 1

Chapter 15, Lesson 3

Chapter 15, Lesson 3

MOD-2.C.5 - Programmers write method code to satisfy the postconditions
when preconditions are met

MOD-2.C.2 - Three types of comments in Java include /* */, which generates
a block of comments, //, which generates a comment on one line, and /**
*/, which are Javadoc comments and are used to create API documentation.
MOD-2.C.3 - A precondition is a condition that must be true just prior to the
execution of a section of program code in order for the method to behave as
expected. There is no expectation that the method will check to ensure
preconditions are satisfied.

MOD-2.B.1 - An object’s state refers to its attributes and their values at a
given time and is defined by instance variables belonging to the object. This
creates a “has-a” relationship between the object and its instance variables.
MOD-2.B.2 - Constructors are used to set the initial state of an object, which
should include initial values for all instance variables.
MOD-2.B.3 - Constructor parameters are local variables to the constructor
and provide data to initialize instance variables.
MOD-2.B.4 - When a mutable object is a constructor parameter, the instance
variable should be initialized with a copy of the referenced object. In this
way, the instance variable is not an alias of the original object, and methods
are prevented from modifying the state of the original object.

MOD-2.C.4 - A postcondition is a condition that must always be true after the
execution of a section of program code. Postconditions describe the
outcome of the execution in terms of what is being returned or the state of
an object

MOD-2.B.5 - When no constructor is written, Java provides a no-argument
constructor, and the instance variables are set to default values.

MOD-2.C.1- Comments are ignored by the compiler and are not executed
when the program is run.

MOD-3.A.1 - Data encapsulation is a technique in which the implementation
details of a class are kept hidden from the user.
MOD-3.A.2 - When designing a class, programmers make decisions about
what data to make accessible and modifiable from an external class. Data
can be either accessible or modifiable, or it can be both or neither.
MOD-3.A.3 - Instance variables are encapsulated by using the private access
modifier.
MOD-3.A.4 - The provided accessor and mutator methods in a class allow
client code to use and modify data.

TOPIC 5.3: Documentation with Comments

TOPIC 5.2: Constructors

MOD-2.D.1 - An accessor method allows other objects to obtain the value of
instance variables or static variables.
MOD-2.D.2 - A non-void method returns a single value. Its header includes
the return type in place of the keyword void.

TOPIC 5.4: Accessor Methods

https://www.compuscholar.com/schools/courses/java/ Page 10 of 18

Copyright, CompuScholar, Inc.

Chapter 15, Lesson 3

Chapter 15, Lesson 3

Chapter 15, Lesson 3

Chapter 15, Lesson 1

Chapter 15, Lesson 1

Chapter 15, Lesson 3

Chapter 15, Lesson 3

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 16, Lesson 2

Chapter 16, Lesson 2

Chapter 16, Lesson 2

Chapter 16, Lesson 2

MOD-2.G.2 - Static methods include the keyword static in the header before
the method name
MOD-2.G.3 - Static methods cannot access or change the values of instance
variables.
MOD-2.G.4 - Static methods can access or change the values of static
variables.

TOPIC 5.7: Static Variables and Methods

MOD-2.F.4- When an actual parameter is a primitive value, the formal
parameter is initialized with a copy of that value. Changes to the formal
parameter have no effect on the corresponding actual parameter.

MOD-2.F.1 - Methods can only access the private data and methods of a
parameter that is a reference to an object when the parameter is the same
type as the method’s enclosing class.
MOD-2.F.2 - Non-void methods with parameters receive values through
parameters, use those values, and return a computed value of the specified
type.
MOD-2.F.3 - It is good programming practice to not modify mutable objects
that are passed as parameters unless required in the specification.

TOPIC 5.6: Writing Methods

MOD-2.F.5 - When an actual parameter is a reference to an object, the
formal parameter is initialized with a copy of that reference, not a copy of
the object. If the reference is to a mutable object, the method or constructor
can use this reference to alter the state of the object.
MOD-2.F.6 - Passing a reference parameter results in the formal parameter
and the actual parameter being aliases. They both refer to the same object.

MOD-2.G.1 - Static methods are associated with the class, not objects of the
class.

MOD-2.E.2 - A mutator (modifier) method is often a void method that
changes the values of instance variables or static variables.

MOD-2.D.5 - The return keyword is used to return the flow of control to the
point immediately following where the method or constructor was called.
MOD-2.D.6 - The toString method is an overridden method that is included in
classes to provide a description of a specific object. It generally includes what
values are stored in the instance data of the object.
MOD-2.D.7 - If System.out.print or System.out.println is passed an object,
that object’s toString method is called, and the returned string is printed.

MOD-2.E.1 - A void method does not return a value. Its header contains the
keyword void before the method name.

MOD-2.D.3 - In non-void methods, a return expression compatible with the
return type is evaluated, and a copy of that value is returned. This is referred
to as “return by value.”
MOD-2.D.4 - When the return expression is a reference to an object, a copy
of that reference is returned, not a copy of the object.

TOPIC 5.5: Mutator Methods

https://www.compuscholar.com/schools/courses/java/ Page 11 of 18

Copyright, CompuScholar, Inc.

Chapter 16, Lesson 2

Chapter 16, Lesson 1

Chapter 16, Lesson 1

Chapter 16, Lesson 1

Chapter 15, Lesson 2

Chapter 15, Lesson 2

Chapter 15, Lesson 2

Chapter 15, Lesson 1

Chapter 16, Lesson 3

Chapter 16, Lesson 3

Chapter 1, Lesson 4
Chapter 10

Chapter 1, Lesson 4-5

Chapter 1, Lesson 4-5

CITATION(S)

Chapter 18, Lesson 1

Chapter 18, Lesson 1

Chapter 18, Lesson 1

MOD-2.G.5 - Static methods do not have a this reference and are unable to
use the class’s instance variables or call non-static methods.
MOD-2.H.1 - Static variables belong to the class, with all objects of a class
sharing a single static variable.

VAR-1.G.2 - When there is a local variable with the same name as an instance
variable, the variable name will refer to the local variable instead of the
instance variable.
VAR-1.G.3 - Formal parameters and variables declared in a method or
constructor can only be used within that method or constructor.

MOD-2.H.2 - Static variables can be designated as either public or private and
are designated with the static keyword before the variable type.
MOD-2.H.3 - Static variables are used with the class name and the dot
operator, since they are associated with a class, not objects of a class.

VAR-1.G.1 - Local variables can be declared in the body of constructors and
methods. These variables may only be used within the constructor or
method and cannot be declared to be public or private.

VAR-1.G.4 - Through method decomposition, a programmer breaks down a
large problem into smaller subproblems by creating methods to solve each
individual subproblem.

TOPIC 5.8: Scope and Access

TOPIC 5.9: this Keyword

VAR-2.A.1 - The use of array objects allows multiple related items to be
represented using a single variable.
VAR-2.A.2 - The size of an array is established at the time of creation and
cannot be changed.

VAR-2.A.3 - Arrays can store either primitive data or object reference data.

VAR-1.H.1 - Within a non-static method or a constructor, the keyword this is
a reference to the current object—the object whose method or constructor
is being called.
VAR-1.H.2 - The keyword this can be used to pass the current object as an
actual parameter in a method call.

IOC-1.A.1 - System reliability is limited. Programmers should make an effort
to maximize system reliability.
IOC-1.A.2 - Legal issues and intellectual property concerns arise when
creating programs.
IOC-1.A.3 - The creation of programs has impacts on society, economies, and
culture. These impacts can be beneficial and/or harmful.

TOPIC 5.10: Ethical and Social Implications of Computing Systems

UNIT 6: Array

TOPIC 6.1: Array Creation and Access

https://www.compuscholar.com/schools/courses/java/ Page 12 of 18

Copyright, CompuScholar, Inc.

Chapter 18, Lesson 1

Chapter 18, Lesson 1

Chapter 18, Lesson 1

Chapter 18, Lesson 1

Chapter 18, Lesson 2

Chapter 18, Lesson 2

Chapter 18, Lesson 1

Chapter 18, Lesson 3

Chapter 18, Lesson 3

Chapter 18, Lesson 3

Chapter 18, Lesson 3

Chapter 18, Lessons 4-5

Chapter 18, Lessons 4-5

VAR-2.C.1 - An enhanced for loop header includes a variable, referred to as
the enhanced for loop variable.

VAR-2.B.3 - Since the indices for an array start at 0 and end at the number of
elements − 1, “off by one” errors are easy to make when traversing an array,
resulting in an ArrayIndexOutOfBoundsExceptionbeing thrown.

VAR-2.A.7 - The valid index values for an array are 0 through one less than
the number of elements in the array, inclusive. Using an index value outside
of this range will result in an ArrayIndexOutOfBoundsExceptionbeing thrown.

VAR-2.B.1 - Iteration statements can be used to access all the elements in an
array. This is called traversing the array.
VAR-2.B.2 - Traversing an array with an indexed for loop or while loop
requires elements to be accessed using their indices.

VAR-2.A.4 - When an array is created using the keyword new, all of its
elements are initialized with a specific value based on the type of elements:
* Elements of type int are initialized to 0
* Elements of type double are initialized to 0.0
* Elements of type boolean are initialized to false
* Elements of a reference type are initialized to the reference value null. No
objects are automatically created

VAR-2.A.5 - Initializer lists can be used to create and initialize arrays.

VAR-2.A.6 - Square brackets ([]) are used to access and modify an element in
a 1D array using an index.

TOPIC 6.2: Traversing Arrays

TOPIC 6.3: Enhanced forLoop for Arrays

VAR-2.C.2 - For each iteration of the enhanced for loop, the enhanced for
loop variable is assigned a copy of an element without using its index.
VAR-2.C.3 - Assigning a new value to the enhanced for loop variable does not
change the value stored in the array.
VAR-2.C.4 - Program code written using an enhanced for loop to traverse and
access elements in an array can be rewritten using an indexed for loop or a
while loop.

CON-2.I.1 - There are standard algorithms that utilize array traversals to:
* Determine a minimum or maximum value
* Compute a sum, average, or mode
* Determine if at least one element has a particular property
* Determine if all elements have a particular property
* Access all consecutive pairs of elements
* Determine the presence or absence of duplicate elements
* Determine the number of elements meeting specific criteria
CON-2.I.2 - There are standard array algorithms that utilize traversals to:
* Shift or rotate elements left or right
* Reverse the order of the elements

TOPIC 6.4: Developing Algorithms Using Arrays

https://www.compuscholar.com/schools/courses/java/ Page 13 of 18

Copyright, CompuScholar, Inc.

CITATION(S)

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

See below

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 2

Chapter 19, Lesson 3

VAR-2.D.4 - When ArrayList<E> is specified, the types of the reference
parameters and return type when using the methods are type E.
VAR-2.D.5 - ArrayList<E> is preferred over ArrayList because it allows the
compiler to find errors that would otherwise be found at run-time.

VAR-2.D.6 - The ArrayList class is part of the java.util package. An import
statement can be used to make this class available for use in the program.
VAR-2.D.7 - The following ArrayList methods—including what they do and
when they are used—are part of the Java Quick Reference:

VAR-2.D.1 - An ArrayList object is mutable and contains object references.

VAR-2.D.2 - The ArrayList constructor ArrayList() constructs an empty list.

VAR-2.D.3 - Java allows the generic type ArrayList<E>, where the generic
type Especifies the type of the elements.

UNIT 7: ArrayList

TOPIC 7.1: Introduction to ArrayList

TOPIC 7.2: ArrayList Methods

VAR-2.E.3 - Since the indices for an ArrayListstart at 0 and end at the number
of elements − 1, accessing an index value outside of this range will result in
an ArrayIndexOutOfBoundsExceptionbeing thrown.
VAR-2.E.4 - Changing the size of an ArrayList while traversing it using an
enhanced for loop can result in a ConcurrentModificationException being
thrown. Therefore, when using an enhanced for loop to traverse an ArrayList,
you should not add or remove elements.

int size() -Returns the number of elements in the list

boolean add(E obj) - Appends obj to end of list; returns true

void add(int index, E obj) -Inserts obj at position index (0 <=index <=
size) ,moving elements at position index and higher to the right (adds
1 to their indices) and adds 1 to size
E get(int index) - Returns the element at position index in the list

E set(int index, E obj) — Replaces the element at position index with
obj; returns the element formerly at position index
E remove(int index) — Removes element from position index, moving
elements at position index + 1 and higher to the left (subtracts 1 from
their indices) and subtracts 1 from size; returns the element formerly
at position index

TOPIC 7.3: Traversing ArrayLists
VAR-2.E.1 - Iteration statements can be used to access all the elements in an
ArrayList. This is called traversing the ArrayList.
VAR-2.E.2 - Deleting elements during a traversal of an ArrayList requires
using special techniques to avoid skipping elements.

https://www.compuscholar.com/schools/courses/java/ Page 14 of 18

Copyright, CompuScholar, Inc.

Chapter 19, Lessons 3-4

Chapter 19, Lesson 4

Chapter 20, Lesson 4

Chapter 20, Lesson 4

Chapter 20, Lessons 2-3

Chapter 20, Lessons 1-3

Chapter 1, Lesson 4
Suppl. Chapter 3, Lesson 1

Chapter 1, Lesson 4
Suppl. Chapter 3, Lesson 1

CITATION(S)

Chapter 21, Lesson 3

Chapter 21, Lesson 1

Chapter 21, Lessons 1, 3

Chapter 21, Lesson 1

Chapter 21, Lesson 2

UNIT 8: 2D Array

TOPIC 8.1: 2D Arrays

TOPIC 7.4: Developing Algorithms Using ArrayLists

IOC-1.B.1 - When using the computer, personal privacy is at risk.
Programmers should attempt to safeguard personal privacy.

CON-2.J.1 - There are standard ArrayList algorithms that utilize traversals to:
* Insert elements
* Delete elements
* Apply the same standard algorithms that are used with 1D arrays
CON-2.J.2 - Some algorithms require multiple String, array, or ArrayList
objects to be traversed simultaneously.

CON-2.K.1 - There are standard algorithms for searching.

CON-2.K.2 - Sequential/linear search algorithms check each element in order
until the desired value is found or all elements in the array or ArrayList have
been checked.

CON-2.L.1 - Selection sort and insertion sort are iterative sorting algorithms
that can be used to sort elements in an array or ArrayList.
CON-2.M.1 - Informal run-time comparisons of program code segments can
be made using statement execution counts.

TOPIC 7.5: Searching

TOPIC 7.6: Sorting

TOPIC 7.7: Ethical Issues Around Data Collection

IOC-1.B.2 - Computer use and the creation of programs have an impact on
personal security. These impacts can be beneficial and/or harmful.

VAR-2.F.1 - 2D arrays are stored as arrays of arrays. Therefore, the way 2D
arrays are created and indexed is similar to 1D array objects.
VAR-2.F.2 - For the purposes of the exam, when accessing the element at
arr[first][second], the first index is used for rows, the second index is used for
columns.
VAR-2.F.3 - The initializer list used to create and initialize a 2D array consists
of initializer lists that represent 1D arrays
VAR-2.F.4 - The square brackets [row][col] are used to access and modify an
element in a 2D array
VAR-2.F.5 - “Row-major order” refers to an ordering of 2D array elements
where traversal occurs across each row, while “column-major order”
traversal occurs down each column.

https://www.compuscholar.com/schools/courses/java/ Page 15 of 18

Copyright, CompuScholar, Inc.

Chapter 21, Lesson 2

Chapter 21, Lesson 2

Chapter 21, Lesson 2

Chapter 21, Lesson 4

Chapter 21, Lesson 4

CITATION(S)

Chapter 22, Lesson 1

Chapter 22, Lesson 1

Chapter 22, Lesson 1

Chapter 22, Lesson 1

Chapter 22, Lesson 2

Chapter 22, Lesson 2

Chapter 22, Lesson 2

Chapter 22, Lesson 2
MOD-3.B.8 - When a subclass’s constructor does not explicitly call a
superclass’s constructor using super, Java inserts a call to the superclass’s no-
argument constructor.

CON-2.N.2 - All standard 1D array algorithms can be applied to 2D array
objects.

MOD-3.B.1 - A class hierarchy can be developed by putting common
attributes and behaviors of related classes into a single class called a
superclass.
MOD-3.B.2 - Classes that extend a superclass, called subclasses, can draw
upon the existing attributes and behaviors of the superclass without
repeating these in the code.
MOD-3.B.3 - Extending a subclass from a superclass creates an “is-a”
relationship from the subclass to the superclass.
MOD-3.B.4 - The keyword extends is used to establish an inheritance
relationship between a subclass and a superclass. A class can extend only one
superclass.

MOD-3.B.5 - Constructors are not inherited.

TOPIC 9.2: Writing Constructors for Subclasses

MOD-3.B.6 - The superclass constructor can be called from the first line of a
subclass constructor by using the keyword super and passing appropriate
parameters.
MOD-3.B.7 - The actual parameters passed in the call to the superclass
constructor provide values that the constructor can use to initialize the
object’s instance variables.

VAR-2.G.1 - Nested iteration statements are used to traverse and access all
elements in a 2D array. Since 2D arrays are stored as arrays of arrays, the
way 2D arrays are traversed using for loops and enhanced for loops is similar
to 1D array objects.
VAR-2.G.2 - Nested iteration statements can be written to traverse the 2D
array in “row-major order” or “column-major order.”
VAR-2.G.3 - The outer loop of a nested enhanced for loop used to traverse a
2D array traverses the rows. Therefore, the enhanced for loop variable must
be the type of each row, which is a 1D array. The inner loop traverses a single
row. Therefore, the inner enhanced for loop variable must be the same type
as the elements stored in the 1D array.
CON-2.N.1 - When applying sequential/linear search algorithms to 2D arrays,
each row must be accessed then sequential/linear search applied to each
row of a 2D array.

TOPIC 8.2: Traversing 2D Arrays

UNIT 9: Inheritance

TOPIC 9.1: Creating Superclasses and Subclasses

https://www.compuscholar.com/schools/courses/java/ Page 16 of 18

Copyright, CompuScholar, Inc.

Chapter 22, Lesson 2

Chapter 23, Lesson 1

Chapter 23, Lesson 1

Chapter 23, Lesson 1

Chapter 23, Lesson 1

Chapter 23, Lesson 3

Chapter 23, Lesson 3

Chapter 23, Lesson 3

Chapter 23, Lesson 3

Chapter 23, Lesson 3

Chapter 23, Lesson 3

Chapter 23, Lesson 1

Chapter 23, Lesson 1

Chapter 23, Lesson 1

Chapter 23, Lesson 4

Chapter 23, Lesson 4

Chapter 23, Lesson 4

MOD-3.B.9 - Regardless of whether the superclass constructor is called
implicitly or explicitly, the process of calling superclass constructors
continues until the Object constructor is called. At this point, all of the
constructors within the hierarchy execute beginning with the Object
constructor

MOD-3.E.2 - The Object class is part of the java.lang package

MOD-3.B.11 - Any method that is called must be defined within its own class
or its superclass.
MOD-3.B.12 - A subclass is usually designed to have modified (overridden) or
additional methods or instance variables
MOD-3.B.13 - A subclass will inherit all public methods from the superclass;
these methods remain public in the subclass.

MOD-3.B.14 - The keyword super can be used to call a superclass’s
constructors and methods.
MOD-3.B.15 - The superclass method can be called in a subclass by using the
keyword super with the method name and passing appropriate parameters.

MOD-3.C.1 - When a class S “is-a” class T, T is referred to as a superclass, and
S is referred to as a subclass.
MOD-3.C.2 - If S is a subclass of T, then assigning an object of type S to a
reference of type T facilitates polymorphism.
MOD-3.C.3 - If S is a subclass of T, then a reference of type T can be used to
refer to an object of type Tor S.
MOD-3.C.4 - Declaring references of type T, when S is a subclass of T, is
useful in the following declarations:
* Formal method parameters
* arrays — T[]varArrayList<T>var

MOD-3.D.1 - Utilize the Object class through inheritance.

MOD-3.D.2 - At compile time, methods in or inherited by the declared type
determine the correctness of a non-static method call.
MOD-3.D.3 - At run-time, the method in the actual object type is executed
for a non-static method call

MOD-3.E.1 - The Object class is the superclass of all other classes in Java.

MOD-3.E.3 - The following Object class methods and constructors—including
what they do and when they are used—are part of the Java Quick Reference:
* boolean equals(Object other)
* String toString()

TOPIC 9.3: Overriding Methods

TOPIC 9.4: super Keyword

TOPIC 9.5: Creating References Using Inheritance Hierarchies

TOPIC 9.6: Polymorphism

TOPIC 9.7: Object Superclass

MOD-3.B.10 - Method overriding occurs when a public method in a subclass
has the same method signature as a public method in the superclass.

https://www.compuscholar.com/schools/courses/java/ Page 17 of 18

Copyright, CompuScholar, Inc.

Chapter 23, Lesson 4

CITATION(S)

Chapter 24, Lesson 1

Chapter 24, Lesson 1

Chapter 24, Lesson 1

Chapter 24, Lesson 1

Chapter 24, Lesson 1

Chapter 24, Lesson 1

Chapter 24, Lesson 2

Chapter 24, Lesson 2

Chapter 24, Lesson 2

Chapter 24, Lesson 2

Chapter 24, Lesson 3
CON-2.Q.1 - Merge sort is a recursive sorting algorithm that can be used to
sort elements in an array or ArrayList.

CON-2.O.2 - Recursive methods contain at least one base case, which halts
the recursion, and at least one recursive call.

CON-2.O.1 - A recursive method is a method that calls itself.

CON-2.P.4 - The binary search algorithm can be written either iteratively or
recursively.

CON-2.P.2 - The binary search algorithm starts at the middle of a sorted array
or ArrayList and eliminates half of the array or ArrayList in each iteration
until the desired value is found or all elements have been eliminated.
CON-2.P.3 - Binary search can be more efficient than sequential/linear
search.

CON-2.O.4 - Parameter values capture the progress of a recursive process,
much like loop control variable values capture the progress of a loop.
CON-2.O.5 - Any recursive solution can be replicated through the use of an
iterative approach.
CON-2.O.6 - Recursion can be used to traverse String, array, and ArrayList
objects.

CON-2.P.1 - Data must be in sorted order to use the binary search algorithm.

TOPIC 10.2: Recursive Searching and Sorting

MOD-3.E.4 - Subclasses of Object often override the equals and toString
methods with class-specific implementations.

UNIT 10: Recursion

TOPIC 10.1: Recursion

CON-2.O.3 - Each recursive call has its own set of local variables, including
the formal parameters.

https://www.compuscholar.com/schools/courses/java/ Page 18 of 18

