LESSON 6

Exponential and Logarithmic Functions

Exponential functions are of the form y = a* where # is a constant greater than
zero and not equal to one and x is a variable. Both y = 2" and y = €" are exponen-

tial functions. The function, €*, is extensively used in calculus. You should memo-

rize its approximate value when x = 1. (el ~ 2.718)
You should also be able to quickly graph y = ¢* without the aid of a calculator.

A simple graph of y = ¢* is shown below.

Figure 1

LOGARITHMIC FUNCTIONS

The equation y = log_x is the same as a’ = x. The inverse of the exponential
function is y = a*. In this course we will restrict our study of logarithms to log base
¢ which will be written as In(x). The equation y = In(x) is the inverse function of
y = ¢". Notice that the graph of In(x) is a reflection of graph of ¢* around the line
y = x. You should be able to quickly sketch from memory y = In(x). It will also be

important to remember the basic logarithm rules listed on the next page.
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Figure 2

/y = In(x)

A
Y

Remember that the natural log of a negative number is undefined. Some books

specify In(x) as In |x|. We will use In(x) for this book. Be careful to use only posi-

tive, non-zero values for x when employing the natural log function.
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The natural log function can be used to free variable exponents from their
exponential functions. Conversely, the exponential function can do the same for

the natural log functions.

Example 1
Solve for x.

2X='I

Taking In of both sides:

In(ezx) ~1n(1) checking e2©® = ¢0 = 1
2x=0
x=0
Example 2
Solve for x.
Inx+5)=0

Use each side of the equation as the exponent for e.

eIn(x +5) _ eO

X+5=1;sox=-4

Sometimes the equations are complex and we need to use substitution to

solve them. See example 3 on the next page.
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Example 3
Solve for x.

e?X - 4eX+3=0
Substituting u = eX, u® - 4u + 3 = 0.
Factoring, we get (u - 3)(u-1) =0.
Replacing u with X, we get (e* - 3)(e* -1) = 0.
X=1.

Solving each factor, we get: e* = 3; X =

Taking the In of both sides:

Example 4
Draw the graph of y = 2e* and its inverse.

y =2e
x = 2eY switch variables

LAY

x>= In(ey)
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LESSON PRACTICE

Answer the question.

X
1. Draw the graph of y = eT' Find the inverse function. Graph it.

2. Draw the graph of y = 2e*. Find the inverse function. Graph it.

3. Solve for x.

A. e2X+]=]

C. 0 =In(2x +5)

CALCULUS LESSON PRACTICE 6A
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LESSON PRACTICE 6A

D. In(x) + In(5) = 6

4. Solve for x. (Hint: Substitute and factor.)

A. eXX_5eX=-6

B. 2e2X+7e%=4
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LESSON PRACTICE

Answer the question.

1. Draw the graph of y = e** !, Find the inverse function. Graph it.

X

2. Draw the graphofy=e 2 . Find the inverse function. Graph it.

3. Solve for x.

A. Xt In(3) _ 2

CALCULUS LESSON PRACTICE 6B
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LESSON PRACTICE 6B

C. In(x®+3x+5)=In(1-x)

4. Solve for x.

A, 2In%(x) + 3 = 7In(X)

B. e?X=2¢X
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LESSON PRACTICE

Answer the question.

1. Draw the graph of y = 2x2. Find the inverse function. Graph it.

Solve for x.

3. InBx-1)=1

CALCULUS LESSON PRACTICE 6C
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LESSON PRACTICE 6C

4. e?*X_7¢X4+10=0

5. In?(x) = 2 In(x)

6. e2*-3eX+2=0
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LESSON PRACTICE

Solve for x.

‘l- e2X+2=5

2. 2e%X4+5eX=3

3. Inx+2)=2
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LESSON PRACTICE 6D

4. Inx+1)+In4)=3

5. Solve for x: In(2x - 4) = 2.

6. Draw the graph of y = e3*. Find the inverse function. Graph it.
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TEST

Circle your answer.

1. Simplify |n£> =

A. In(4.5)

1
B. > In(4.5)
C. In(3)

D. cannot be simplified

2. Solve for x: In(x) - In(4) = 2.

A 7}e2
B. e*
C e?
D. 4e?
3 In<%> is the same as:
A. 2
B. In(18)
C. In(3)
D. In(6) - In(3)

4. Find the inverse function: f(x) = In(x - 2).

-1

A, T = In(x +2)
B. [ =

C. f‘%x)=2e -2
D. f7'(x)=2e"

5. Simplify In(\/?) + In(\/ﬁ).

A In(\/ﬁ)

B. 20

c. In(2vs)

D cannot be simplified
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TEST 6

10.

18

Solve for x: Inz(x) -51Inx)=-4

A X =e, et

B x = In(4), In(5)
C. X = e5, e

D x = 1n(4), e

eX and In(x) are inverse functions. The graph of y = In(x) is the reflection of the graph

of y = eX around the:

A. X-axis
B. y-axis
C. origin
D liney =x
Solve for x: e2X = 3e*
A. x=e*-3
B. x = In(3)
C. x=1In(3)and x =0
D. x=0

Solve for x: In(2) + In(x) = 7

2
e
A. X="
B. x = 7e2
C x =2e’
7
D X = e
2
Solve for x: e3*~ 1 =1
A. ?
1
B. -—
3
C. 3
D e3
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7. cos(2x) =0 forxin]|O0, 1]

cos@® =0 wheng="1 3m Sm etc

2722
ox = 1 oy = 3T oy = 2T
X=3 =5 =5
yo T xo3m 5T

4 4 4
1T 317
=T and
X 4an 2
1 T
8 t —>=o[o,—}
anzx >

tan(e) =0 when 0 =0, T, 21T, 31T etc.

Ty L
2x_O 2x T
x=0 X=2TT

x = 0 is the only answer in [O, %}

Lesson Practice 6A
X

-y
X = % (Switch variables)
3x=¢Y
In(3x) = In(eY)
In(3x) =y
71(x) =1n(3x)
A - y
X /
) =eT p
/
) /710 =1n3x)
< ~ >
/
i

CALCULUS

LESSON PRACTICE 5D - LESSON PRACTICE 6A

X

y =2e
x = 2eY (reverse variables)

In(x) = In(2ey)
In(x) = In2+ %

In(x)—ln(2)=y

Note:

F7(x) = In(x) = 1n(2)
This problem is the same as
example 4 in the instruction
manual but solved differently.
Both solutions are correct.

In(x) - In(2) = In<L>

2

[ fy=x 7

A

1= 1n(x) - In(2)

e2X+‘| =1

In(ezx”) -1n(1)
2x+1=0
2x = -1
oo
2e3X — eO
In(2¢3) = In(e°)
In(2)+3x =0
3x = -In(2)

In(2)

X=-=3
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