LIFFEPAC Math

MATHEMATICS 602

CONTENTS

LIFEPAC ${ }^{\circledR} 602$ Objectives i
I. Write Decimals as Fractions, Multiply by 10, 100, 1,000, Multiples, Prime Factors, Factor Boxes 1
II. Fractions with Unlike Denominators, Divide w/2-digit Divisor, Exponential Notation 8
III. Patterns in Even and Odd, Prime Factors, Rounding, Add, Subtract Mixed Numbers, Compare Fractions 16
IV. Add, Subtract, Multiply Decimals, Missing Numbers, Borrow to Subtract Fractions, Divide w/1-digit Divisor 24
V. Reading, Review, and Reinforcement 32
LIFEPAC 602 Index 41
Author: Carol Bauler, B.A.Editor:Alan Christopherson, M.S.Graphic Design:JoAnn Cumming, A.A.

804 N. 2nd Ave. E., Rock Rapids, IA 51246-1759
© MCMXCIX by Alpha Omega Publications, Inc. All rights reserved. LIFEPAC is a registered trademark of Alpha Omega Publications, Inc.

To review

```
- base ten system
* numbers to billions' place
        round to billions' place
* operation symbols
        addition, subtraction
        equal, not equal
```

multiplication, division greater than, less than

```
- equations
- factors
- fractions
simplify using the greatest common factor (GCF) equivalent fractions add and subtract with like denominators
- decimals write equivalent decimals add and subtract convert to fractions
- missing number problems
- multi-operation problems
- multiples
- number sentences
- standard measurements for linear and square units, weight, volume, time
- whole number operations subtraction multiplication by 2-digit and 3-digit multipliers division by 1-digit and 2-digit divisors
```

To learn to

- estimate answers in addition and subtraction to billions' place
- write the understood decimal point in whole numbers
- use patterns for adding and subtracting even and odd numbers
- understand the meaning of prime numbers and prime factors and to find the prime factors of a number using factor boxes
- write numbers in exponential notation, to learn the meaning of base factor, exponent, powers of ten, repeated factor, and to understand the base factor and exponent as a multiplication sign
- recognize fractions as part of a whole or part of a set
- solve fraction problems
in addition and subtraction with unlike denominators using the least common multiple (LCM) by borrowing to subtract with mixed numbers and mixed numbers with fractions
- write fractions with unlike denominators in number order

I. Part One

Objectives

To learn about zero in whole numbers and decimals
To multiply by 10, 100, 1,000
To find the prime factors of a number
Every whole number has an understood decimal point.
The decimal point is written to the right of the digit in ones' place.

1.1 Write the understood decimal point in the whole numbers.
5
341
8,546
439,561,370
26,309,641,827

The number system that we use is a base ten system.
Decimals are a base ten system for fractions.
The first place to the right of the decimal point is tenths' place.
Decimals begin with tenths' place because decimals are fractions.

We have learned about numbers to hundred billions.
1.2 Write in number words.
a. $430,851,769,023$ \qquad
b. $526,043,297,600$ \qquad
\qquad
The denominators for decimals follow a pattern similar to whole numbers. The pattern is tenths, hundredths, one-thousandths, ten-thousandths, ...
1.3 Follow the pattern. Begin with the decimal point. Count decimal places from left to right. Write the decimal numbers as fractions.
a. .5 \qquad .025 \qquad
\qquad .90176 \qquad
b. . 2 \qquad .350 \qquad
.9354 \qquad
.65130 \qquad

Because decimals are fractions, we can write equivalent decimals. We simply add zero(s) to the right of the decimal number.

$$
\begin{aligned}
& \frac{7}{10}=\frac{70}{100}=\frac{700}{1,000} \\
& .7=.70=.700
\end{aligned}
$$

1.4 Write equivalent decimals to ...
a. hundredths' place.
. 9 \qquad
. 6 \qquad
. 2 \qquad
. 3 \qquad
b. thousandths' place. \qquad .73 \qquad
. 06 \qquad .90
c. ten thousandths' place. \qquad
.321 \qquad
. 023 \qquad .08 \qquad

Zero changes the value of a whole number if it is added to the right of the digits.
1.5 Cross out the zeros that do not change the value of the number.

a.	$00,365,490$	$4,506,143$	60,521	000,756	$0,496,002$
b. $4,003,250$	$0,527,061$	90,020	403,271	000,369	

Zero changes the value of a decimal if it is added anywhere $.7=.70$ to the left of a digit.
1.6 Cross out the zeros that do not change the value of the decimal.
a.
.30 . 030
. 007
.0250
.00960
b.
.5400
. 063
.080
.36700

There is a pattern for multiplying whole numbers by $10,100,1,000$.
1.7 Write the answer.
358

$\times 10$$\quad$ How many 0's in the multiplier? | 000 | |
| ---: | :--- |
| 3580 | |
| 3,580 | How many 0's in the product? |
| 358 | Is it the same number of zeros? |
| $\times 100$ | How many 0's in the multiplier? |
| 000 | How many 0's in the product? |
| 0000 | Is it the same number of zeros? |

When multiplying by a number in the sequence of $10,100,1,000, \ldots$ count the number of zeros in the multiplier and add them to the multiplicand.
$10 \times 65=650 \quad 100 \times 65=6,500 \quad 1,000 \times 65=65,000$
1.8 Multiply. Write commas in answers.
a. $\quad 10 \times 43=$
b. $\quad 10 \times 8=$ \qquad
a. $1,000 \times 9=$ \qquad
b. $\quad 10 \times 51=$ \qquad
$100 \times 7=$ \qquad
$1,000 \times 954=$ \qquad
$100 \times 42=$ \qquad
$1,000 \times 60=$ \qquad
$100 \times 306=$ \qquad
$1,000 \times 43=$ \qquad

$$
100 \times 7=
$$

\qquad
1.9 Subtract.

| 7,043 |
| ---: | ---: | ---: | ---: |
| $-\quad 2,498$ | | 8,531 |
| ---: |

