

Physics

Workbook

Table of Contents

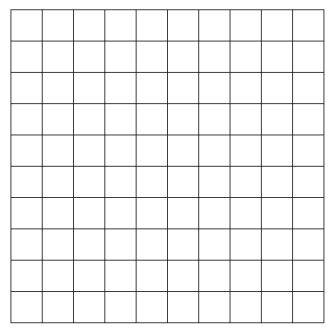
To the Student	Activity 19
Unit 1: Forces	Torque
Activity 1	Activity 20 Galileo and His Work
Distance and Displacement	Activity 21
Activity 2	The Law of Falling Objects
Vector and Scalar Quantities	Activity 22
Activity 3	Newton's Law of Universal Gravitation 22
Average Speed	Activity 23
Activity 4	Inverse Square Ratio
Distance4	Activity 24
Activity 5	Orbits of Planets and Satellites24
Acceleration5	Activity 25
Activity 6	Satellites in Space25
Constant Acceleration 6	Activity 26
Activity 7	Elevator and Scale
Describing the Rotation of Earth	Unit 2: Energy and Heat
Activity 8	Omit 2. Energy and Heat
Describing the Rotation of a Figure Skater 8	Activity 27
Activity 9	Definition of Work
Forces Crossword	Activity 28
Activity 10	Work, Force, and Distance28
Newton's First Law	Activity 29
Activity 11	Work and Energy
Newton's Second Law	Activity 30
Activity 12	Kinetic Energy30
Maximum Speed	Activity 31
Activity 13	Kinetic and Potential Energy31
Mechanical Forces	Activity 32
Activity 14 The Direction of Forces	Conservation of Energy
The Direction of Forces	Activity 33
Activity 15	Transformation of Energy
Free-Body Diagrams	Activity 34
Activity 16	Calculating with Conservation of Energy 34
Reaction Forces	Activity 35
Activity 17 Newton's Third Law	Joule's Paddle-Wheel Experiment
Activity 18	Activity 36
Distribution of Mass	Heat

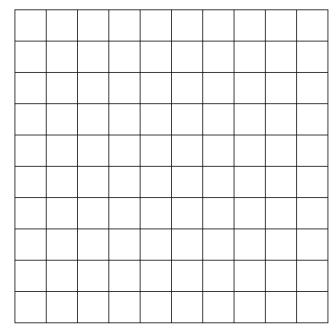
Table of Contents, continued

Activity 37 Direction of Heat Flow	Activity 55 Speed of Sound55
Activity 38 Evaporation	Activity 56 Natural Frequency56
Activity 39 Latent Heat of Vaporization	Activity 57 Overtones
Activity 40 Transfer of Heat	Activity 58 Illustrating the Doppler Effect58
Activity 41 Conduction, Convection, and Radiation 41	Activity 59 Sound Crossword59
Activity 42 Vocabulary Matchup42	Activity 60 Light Waves60
Activity 43 Heat Engines and Adiabatic Expansion 43	Activity 61 Light and Color61
Activity 44 The Laws of Thermodynamics	Activity 62 Color Mixing
Activity 45 Closed Systems	Activity 63 The Law of Reflection63
Activity 46 Entropy	Activity 64 Iridescence
Activity 47 Entropy Is Everywhere47	Activity 65 Polarization
Unit 3: Sound and Light	Activity 66 Scattering of Light
Activity 48 Descriptions of Waves	Unit 4: Electricity, Magnetism, and Beyond
Activity 49 Frequency and Period49	Activity 67 Static Electricity 67
Activity 50 Measuring in Hertz50	Activity 68 Charges and Electric Current 68
Activity 51 Transverse Waves and Longitudinal Waves 51	Activity 69 Resistance and Ohm's Law
Activity 52 Motion of Waves	Activity 70 Magnetic Fields70
Activity 53 Creating Sound Waves	Activity 71 Magnetism71
Activity 54 Making Sound54	Activity 72 Vocabulary Matchup72

Table of Contents, continued

Activity 73 Series and Parallel Circuits	Activit Rel
Activity 74 The Motor Effect	Activity Tin
Activity 75 Electric Motor Challenge	Activity Rac
Activity 76 The Generator Effect	Activity Rac


Activity 77 Relativity77
Activity 78 Time Travelers
Activity 79 Radioactivity79
Activity 80
Radiometric Dating 80


Descriptions of Waves

Read the two descriptions of waves below. Use the information to draw each wave on the grid that follows. Each square on the grid is 1 unit by 1 unit.

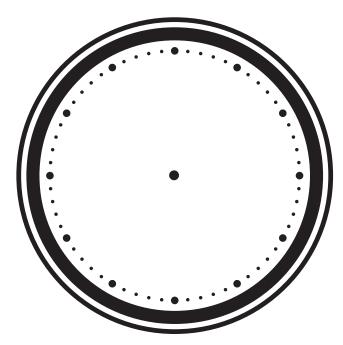
1. The wavelength is 4 units. The amplitude is 2 units.

2. The wavelength is 5 units. The amplitude is 1 unit.

Frequency and Period

Circle the answer that best completes each sentence below.

1.		Suppose that a flag flutters 5 times per second on a windy day. The period of each individual flutter is		
	a.	5 seconds		
	b.	0.5 seconds		
	c.	0.2 seconds		
	d.	0.02 seconds		
2.		pendulum swings back and forth once every 2 seconds. The frequency of each complete ing of the pendulum is		
	a.	0.5 Hz		
	b.	1 Hz		
	c.	2 Hz		
	d.	5 Hz		
3.	Th	e period of the swing of the same pendulum is		
	a.	0.5 seconds		
	b.	1 second		
	c.	2 seconds		
	d.	5 seconds		
4.	As	the frequency of a wave increases, the period of the wave		
	a.	decreases		
	b.	remains the same		
	c.	increases		
	d.	approaches infinity		



Measuring in Hertz

In your student text, you learned that the most common unit used to measure frequency is the hertz. Hertz is the number of waves per second.

In this activity, you will measure the frequency of the hands of a clock in hertz.

Draw in the numbers (1 to 12) on the clock below. Then draw in the second hand, the minute hand, and the hour hand.

Now think about how often each hand moves around the clock, and answer the following three questions. Be sure to write your answer in hertz!

- **1.** What is the frequency (in hertz) of the second hand? (*Hint:* It takes the second hand 60 seconds to move all the way around the clock.)
- **2.** What is the frequency (in hertz) of the minute hand?
- **3.** What is the frequency (in hertz) of the hour hand?

Motion of Waves

Circle the answer that best completes each sentence below.

- **1.** The frequency of a wave is _____.
 - **a.** how quickly the wave moves from one place to another
 - **b.** the density of the medium through which the wave travels
 - **c.** how quickly the wave oscillates
 - **d.** the direction the wave is traveling
- **2.** One way to increase the speed of a wave traveling along a rope is to ______.
 - **a.** shake the rope slower
 - **b.** shake the rope faster
 - **c.** stretch the rope tighter
 - **d.** None of the above. There is no way to increase the speed of a wave.
- **3.** When the crests of two different waves overlap and create an even bigger crest, it is called
 - **a.** destructive interference
 - **b.** constructive interference
 - c. diffraction
 - **d.** a longitudinal wave
- **4.** Suppose a transverse wave is traveling through a medium left to right. The particles of the medium will move _____.
 - **a.** from left to right only
 - **b.** both left and right
 - **c.** both up and down
 - **d.** up, down, left, and right

UNIT 3 • ACTIVITY 51 Transverse Waves and Longitudinal Waves

Remember that a transverse wave is the kind of wave in which the m

Remember that a transverse wave is the kind of wave in which the medium moves perpendicular to the direction the wave travels. Imagine that several of your friends or family members are standing in a line in front of you. It is your job to instruct them how to create one big transverse wave. The medium is the line of people. The wave should travel all the way from one end of the line to the other.

1.	to produce the transverse wave? Write your instructions on the lines below.
2.	Next you decide to ask the group to produce a longitudinal wave. Remember that a longitudinal wave is the kind of wave in which the vibration of the medium is in the same direction as the wave is traveling. What would you say to the line of people to explain how to create a longitudinal wave? Write your instructions on the lines below.
3.	Which wave do you think would be the most difficult for the group to create? Why?