

Click the section you want to preview.

TEXTBOOK
TABLE OF CONTENTS
UNIT 1

TEACHING GUIDE \&
ANSWER KEY
TABLE OF CONTENTS
SUGGESTED DAILY SCHEDULE
UNIT 1
SUPPLY LIST

TABLE OF CONTENTS

Introduction to Exploring Creation with Mathematics, Level 6 9
Unit 1: Whole Numbers, Decimals, and Fractions 11
Seeing Our Creator in the Design of Our Brains. 11
Chapter 1: Whole Numbers 13
Lesson 1: Multiples 14
Lesson 2: Multiplication 17
Lesson 3: Factors 21
Lesson 4: Prime Factorization 25
Lesson 5: Long Division (Day One) 30
Lesson 6: Long Division (Day Two) 33
Lesson 7: Exponents 37
Lesson 8: Squares and Square Roots 40
Lesson 9: The Order of Operations (Day One) 44
Lesson 10: The Order of Operations (Day Two) 47
Lesson 11: The Distributive Property 48
Chapter 1 Review 50
Chapter 2: Decimals 51
Lesson 12: Adding Decimals 52
Lesson 13: Subtracting Decimals 56
Lesson 14: Adding and
Subtracting Decimals 60
Lesson 15: Multiplying Decimals 64
Lesson 16: Dividing Whole
Numbers with Decimal Answers 67
Lesson 17: Dividing Decimals 71
Lesson 18: Decimal Mixed
Review 75
Lesson 19: Problem Solving
Practice \#1 78
Chapter 2 Review 82
Chapter 3: Fractions 83
Lesson 20: Fractions and
Decimals 84
Lesson 21: Repeating Decimals 88
Lesson 22: Adding and Subtracting Fractions 93
Lesson 23: Add and Subtract Mixed Numbers (Day One). 96
Lesson 24: Add and Subtract Mixed Numbers (Day Two) 101
Lesson 25: Multiply Fractions 105
Lesson 26: Multiply Mixed Numbers 111
Lesson 27: Divide Fractions 114
Lesson 28: Divide Whole Numbers with Fraction Answers 118
Lesson 29: Divide Mixed Numbers 121
Lesson 30: Mixed Fraction Review 125
Chapter 3 Review 127
Unit 1 Project: Geometric Art. 129
Unit 2: Ratios, Rates, and Percents 131
Seeing Our Creator in Ratios, Rates, and Percents 131
Chapter 4: Ratios and Rates 135
Lesson 31: Ratios (Part One) 136
Lesson 32: Ratios (Part Two) 140
Lesson 33: Equivalent Ratios 143
Lesson 34: Ratio Tables 146
Lesson 35: Rates 150
Lesson 36: Sugar Rates 153
Lesson 37: Unit Prices 155
Lesson 38: Zip Line Rates 159
Chapter 4 Review 160
Chapter 5: Percents 161
Lesson 39: Introduction to Percents 162
Lesson 40: Percent to Decimal 165
Lesson 41: Percent to Fraction 167
Lesson 42: Fractions, Decimals, and Percents (Day One) 170
Lesson 43: Fractions, Decimals, and Percents (Day Two) 173
Lesson 44: Ordering Fractions, Decimals, and Percents 175
Lesson 45: Finding a Percent 178
Lesson 46: Percent of a
Number (Part One) 181
Lesson 47: Percent of a Number (Part Two) 184
Lesson 48: Problem-Solving Practice \#2 187
Chapter 5 Review 190
Unit 2 Project: Ratios in the Human Body 191
Unit 3: Measurement, Data, and Probability 193
Seeing Our Creator in Probability 193
Chapter 6: Measurement and
Conversions 195
Lesson 49: Elapsed time 196
Lesson 50: Celsius and Fahrenheit 199
Lesson 51: Measuring and
Converting Length 203
Lesson 52: Measuring and Converting Capacity 207
Lesson 53: Measuring and
Converting Weight and Mass 210
Lesson 54: Problem Solving Practice \#3 214
Chapter 6 Review 217
Chapter 7: Displaying and Analyzing Data 219
Lesson 55: Bar Graphs and Line Graphs 220
Lesson 56: Circle Graphs 224
Lesson 57: Mean, Median, Mode, and Range 227
Lesson 58: Box Plots 232
Lesson 59: Histograms 237
Lesson 60: Survey Mini-Project 240
Chapter 7 Review 242
Chapter 8: Probability 243
Lesson 61: Experimental Probability 244
Lesson 62: Theoretical Probability 247
Lesson 63: Experimental and Theoretical Probability 250
Lesson 64: Probability Word Problems 252
Lesson 65: Probability In Monopoly. 254
Chapter 8 Review 255
Unit 3 Project: Create Your Own Board Game 256
Unit 4: Negative Numbers 257
Seeing Our Creator in Negative Numbers 257
Chapter 9: Introduction to Negative Numbers 259
Lesson 66: Integers and Opposites 260
Chapter 11: Algebraic Expressions and Equations 311
Lesson 80: Properties of Numbers 312
Lesson 81: Algebraic
Expressions (Part One) 317
Lesson 82: Algebraic
Expressions (Part Two) 321
Lesson 83: Simplifying Algebraic Expressions (Part One) 324
Lesson 84: Simplifying Algebraic Expressions (Part Two) 327
Lesson 85: Evaluating Algebraic Expressions (Part One) 329
Lesson 86: Evaluating Algebraic Expressions (Part Two) 332
Lesson 87: Writing Equations 335
Lesson 88: Addition and Subtraction Equations (Part One) 338
Lesson 89: Addition and Subtraction Equations (Part Two) 342
Lesson 90: Multiplication and Division Equations 344
Lesson 91: Mixed Equations 348
Chapter 11 Review 350
Chapter 12: Inequalities 351
Lesson 92: Introduction to Inequalities 352
Lesson 93: Negative Inequalities 355
Lesson 94: Graphing Inequalities 357
Lesson 95: Inequality Word Problems 360
Lesson 108: Composite Figures 414
Lesson 109: Distance on the
Coordinate Plane 416
Lesson 110: Graphing Figures 418
Lesson 111: Area and Perimeter on the Coordinate Plane 422
Chapter 14 Review 426
Chapter 15: Three-Dimensional
Figures 427
Lesson 112: 3D Shapes and
Their Properties 428
Lesson 113: Nets 433
Lesson 114: Surface Area
(Part One) 435
Lesson 115: Surface Area (Part Two) 441
Lesson 116: Volume (Part One). 443
Lesson 117: Volume (Part Two) 446
Chapter 15 Review 450
Unit 6 Project: MarshmallowMansions451

In this chapter, you will learn to:

- Find multiples and factors
- Evaluate exponents
- Use the order of operations

LESSON 1: MULTIPLES

The Most Moltiples

You Will Need:

- 2 players
- 2 different colored pencils
- Numbered cards 3-10 (such as Uno cards or playing cards)

You Will Do:

1. Shuffle the cards. Player One draws a
 card and colors in all the multiples of that number on the chart below. It is ok for players to skip count if they do not remember all of the multiples.
2. Player Two draws a card and colors in the multiples of that number. If a multiple is already colored in, it is skipped.
3. Play continues until all the numbered cards have been played. The player with the most squares colored in wins.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Multiples are the result of multiplying a number. For instance, the multiples of 7 are 7, 14, 21, 28 , and on and on. There is no end to the number of multiples.

If a number is the multiple of two or more numbers, we call it a common multiple. Below is a list of the multiples of 4 and 5. The common multiples of 4 and 5 are circled.

Multiples of 4: $\quad 4,8,12,16,20,24,28,32,36,40,44,48, \ldots$
Multiples of $5: \quad 5,10,15,20,25,30,35,40,45,50, \ldots$

Common multiples can help you solve many different kinds of problems. But, they are especially helpful when you try to add and subtract fractions with different denominators. You will learn more about that in Chapter 3.

MULTIPLES: The result of multiplying a number
COMMON MULTIPLE: When a number is a multiple of 2 or more numbers

EXAMPLE 1: List the first $\mathbf{8}$ multiples of 8.

We can skip count to find these or just do the multiplication in our head.

$$
\begin{array}{ll}
8 \times 1=8 & 8 \times 5=40 \\
8 \times 2=16 & 8 \times 6=48 \\
8 \times 3=24 & 8 \times 7=56 \\
8 \times 4=32 & 8 \times 8=64
\end{array}
$$

EXAMPLE 2: Find a common multiple of 5 and 8.

First, we will list the multiples of 5 . Then, the multiples of 8 . We will circle the numbers that are common on both lists.

Multiples of $5: 5,10,15,20,25,30,35,40,45,50, \ldots$
Multiples of $8: 8,16,24,32,40,48,56,64,72, \ldots$

40 is a common multiple of 5 and 8.

1. List the next 7 multiples for each number.
a. 4, \qquad , \qquad , \qquad , \qquad , \qquad , \qquad ,
b. 7, \qquad , \qquad , _ , \qquad , \qquad ,
c. 6, \qquad , \qquad , , _ , \qquad , _ , \qquad
d. 9 , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad ,
e. 5, \qquad , \qquad , \qquad
\qquad , \qquad
2. Is 33 a multiple of 3 ? Yes or no?
3. Is 42 a multiple of 4 ? Yes or no?
4. List a common multiple of 4 and 7 . \qquad
5. Look back at the multiples of 5 above. Circle any multiples of 5 that are also multiples of 3 .
6. Give an example of a number that is a common multiple of 4 and 6. There is more than one correct answer.
7. At a certain store, hot dogs are only sold in packs of 10, and buns are only sold in bags of 8 . What is the least number of hot dogs and buns you can buy so that there is one bun for each hot dog?
8. Mrs. Gong volunteers at the library every 6 days and Mr. Gong volunteers at the local theater every $\mathbf{7}$ days. How many days will it be before they are both volunteering on the same day?

WARM UP

Use your knowledge of multiplication problems to fill in the blanks in each problem. It may take you a few guesses to find the right digit.

19,284
b.

352
1320
$+\quad 1$ 1,672

When we multiply multi-digit numbers, we multiply the ones first and then continue from there. No matter how large the number is that you are multiplying, make sure you always start with the ones and work your way left.

Let's review several different kinds of multiplication problems.

EXAMPLE 1: Find the product.

2,329
$\begin{array}{r} \\ \times \quad 4 \\ \hline\end{array}$
We are multiplying a 4-digit number by a 1-digit number. We just need to start with the ones place value.

2329
Multiply the 4 by the 9 ones. This results in 36 . We write the 6

4
$\times \quad 4$ 6

113
2,329
$\begin{array}{r}4 \\ \times \quad 4 \\ \hline\end{array}$
9,316

Multiply by the tens, hundreds, and thousands being careful to add on any regroupings.

A quick estimate helps us check to make sure our answer makes sense. Our answer should be close to, but less than, 10,000.
$2500 \times 4=10,000$

When we multiply a 2 -digit by a 2 -digit number, we need to pay very careful attention to place value.

EXAMPLE 2: Find the product.

35
$\begin{array}{r} \\ \times 42 \\ \hline\end{array}$

1 When multiplying the 2 by the 5 ones, we must regroup and write a 1 above the tens column. We add this to 6 tens and write a 7
$\begin{array}{r} \\ \times 42 \\ \hline\end{array}$ 70

2
35
42
$\times 4$
70 below.

Before multiplying through by the 4 tens, we need to write a zero

2

35
$\begin{array}{r} \\ \times 42 \\ \hline\end{array}$ 70 4 multiplied by 3 is 12 . Add on the 2 to 12 to get 14 . Finally, we add up the total.
$+1,400$
1,470
put the 2 above the tens column. in the ones column. 4 tens times 5 is 200. We write the 0 and

A quick estimate helps us check to make sure our answer makes sense.
$40 \times 40=1,600$

EXAMPLE 3: Find the product.

2,049
$\begin{array}{r}\times \quad 27 \\ \hline\end{array}$

36 Multiply through by the 7 ones, and be careful with the $\times 27$ regrouping. 14,343

1
2,049
$\begin{array}{r}\times 27 \\ \hline\end{array}$
14,343
$\begin{array}{r}+40,980 \\ \hline\end{array}$

Before multiplying through by the tens, we need to write a zero in the ones column. Then we multiply the 2 by 9 to get 18 . We write the 8 below in the tens column and the one above the hundreds column.

2,049
$\times 27$
\times Finally, we add up the total.
14,343
$\begin{array}{r}+40,980 \\ \hline 55,323\end{array}$
A quick estimate helps us check to make sure our answer makes sense.
$2,000 \times 30=60,000$

Physicisists are scientists who study mattter, energy, and time. They use multiplication in when finding the force of an object by multiplying the mass by the acceleration. They use this calculation for many things including putting a spacecraft into orbit.

Find each product. Write the letter in the box below with the same number to solve the riddle.

WHAT DID THE SKELETON ORDER FOR DINNER?

$$
\begin{array}{llllllll}
\overline{350} & \overline{3,699} & \overline{297} & \overline{900} & \overline{20,410} & \overline{900} & \overline{1,476} & \overline{1,443}
\end{array} \overline{350}
$$

E $\begin{array}{r}4,082 \\ \times \quad 5 \\ \hline\end{array}$
B
37
39
$\times \quad 3$

\section*{S
 | 14 |
| ---: |
| $\times \quad 25$ |}

s $\begin{array}{r}35 \\ \times \quad 10 \\ \hline\end{array}$
R
25
$\begin{array}{r} \\ \times \quad 36 \\ \hline\end{array}$

A

$$
\begin{array}{r}
27 \\
\times \quad 11 \\
\hline
\end{array}
$$

I

$\begin{array}{r}82 \\ \times \quad 18 \\ \hline\end{array}$
R
18
180
$\times \quad$

LESSON 3: FACTORS

You Will Need:

- 2 players
- 2 colored pencils

You Will Do:

1. Player One chooses any number on the board and circles it with his or her colored pencil.
2. Player Two circles all the factors of Player One's number that are on the board. For instance, if Player One
 circled 24, then Player Two would circle 1, 2, 3, 4, 6, 8, and 12.
3. Player Two chooses a number on the board and circles it.
4. Player One circles all the factors of Player Two's number that are still available on the board. Players can agree on a certain number of turns until the game is over. Or, they can play until all spaces are circled. The player with the most numbers circled wins.

4	2	3	4	5
6	7	0	2	10
\square			44	45
36			40	20
2	22		24	

A factor is a number that divides into another number, leaving no remainder. It is often helpful to find a factor of two numbers. The largest factor that two numbers share is called the greatest common factor.

Finding the factors of a number is an important skill that will help you solve many kinds of problems in the future. It can help you simplify fractions or start a long division problem.

FACTOR: A factor is a number that is multiplied to get a product. It also divides evenly into that product.
Example: The factors of 30 are 1,2,3,5,6,10,15, and 30. The factors of 25 are 1,5 , and 25.

GREATEST COMMON FACTOR: This is the largest factor that two numbers have in common.
Example: The greatest common factor of 25 and 30 is 5 .

EXAMPLE 1: Find all the factors of 24.

The easiest way is to make a list of all the ways you can multiply two numbers to get 24 . If we go in order, we can make sure we don't miss any.
1×24
2×12
3×8
4×6
$5 \times ? ? ?$
We cannot multiply 5 to get 24 . And then we would be up to 6 , which we already listed. We have a complete list.

Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24

EXAMPLE 2: What is the greatest common factor of $\mathbf{5 6}$ and $\mathbf{2 8 ?}$

Start by listing the factors.

Factors of 28: 1, 2, 4, 7, 14, 28
Factors of 56: 1, 2, 4, 7, 8, 14, 28, 56
The greatest common factor is 28 .

A prime number is a number with only one pair of factors. That pair of factors will always be 1 and the number itself. The prime numbers less than 10 are $2,3,5$, and 7 . It must be a pair of numbers, 1 and the number. This is why 1 is not prime, it only has one factor; itself.

If a number is greater than 1 and has more than one pair of factors, we say it is composite. The number 15 is a composite number.

PRIME: Any whole number greater than 1 is prime if its only factors are 1 and itself.

COMPOSITE: Any whole number greater than 1 that is not prime.

EXAMPLE 3: List the factors of $\mathbf{2 3}$. Is $\mathbf{2 3}$ prime or composite?

We will make a list.
1×23
$6 \times$?????
$2 \times$????
$7 \times ? ? ? ? ?$
$3 \times ? ? ?$
$8 \times ? ? ? ?$
$4 \times$????
$9 \times ? ? ? ?$
$5 \times ? ? ? ?$
$10 \times ? ? ? ?$

We cannot multiply $2,3,4,5,6,7,8,9$ or 10 to get 23 . At that point, we know we haven't skipped any factors.
Factors of 23: 1, 23
23 is prime.

1. List the factors of each number.
50
6
22
35
2. Find the greatest common factor of each pair of numbers.

a.	77	b.	99
	49		88
c.	56	d.	64
	42		48

3. Find the factors of each number. Then, circle whether it is prime or composite.

12
prime/composite

27
prime/composite39
prime/composite

WARM UP

Prepare for today's lesson by making a list of all the prime numbers under 30. Use the list of numbers below to help you eliminate numbers that have more than two factors.

1. One is not prime. You can cross it out.
2. Any number other than 2 that has 2 as a factor is not prime. You can cross out all of these numbers on the list. This will mean that you are crossing out all of the even numbers except 2.
3. Any number other than 3 that has 3 as a factor is not prime. You can skip count by 3 's to eliminate all of these numbers.
4. Any number other than 5 that has 5 as a factor is not prime. You can cross out all of these numbers on the list. They will all have a zero or a 5 as their ones digit.
5. Look at the remaining numbers. Do any of them have more than 2 factors? If so, cross them out.
6. The remaining numbers are a list of primes. Check your list against the one in the answer key.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
26	27	28	29	30

Prime numbers under 30: \qquad

In the last lesson, you found pairs of factors for a number. In this lesson, you will find the prime factorization of a number. The prime factorization of a number is when we write a number only as the product of prime numbers. Below are examples of two prime factorizations.

$$
\begin{aligned}
& 30=2 \times 3 \times 5 \\
& 36=2 \times 2 \times 3 \times 3
\end{aligned}
$$

PRIME FACTORIZATION:

Rewriting the number as a product of prime numbers.

A tree diagram is a helpful way to find the prime factorization of a number.
$72=$ \qquad \times \qquad \times \qquad \times \qquad \times \qquad

EXAMPLE 1: Find the prime factorization of 20.

Begin by rewriting 20 as the product of 2 numbers. These two numbers will be the first branches of our tree.

The factor 5 is prime, so that branch of the tree is done. But, 4 is not prime. We will split it into two factors.

We know that 2 is prime. All of the branches of the tree are prime, so the tree is finished. Let's write out the product. When we do this, we always write the factors in order from least to greatest. $20=2 \times 2 \times 5$

Note that if we had started with two different factors, we would still have arrived at the same answer. The order is different, but when we write the factors in order from least to greatest, we will see that it is the same answer.
$20=2 \times 2 \times 5$

EXAMPLE 2: Find the prime factorization of 60.

This is a larger number. But remember, you can start with any factor pair. Choose the factor pair that is the easiest for you.

Neither of the branches ends in a prime number. We will need to split both branches again into factor pairs.

Every branch ends in a prime number. We do not need to factor again. Now we need to write out the factors from least to greatest. $60=2 \times 2 \times 3 \times 5$

Prime numbers are very important in math and in life. They are used for many things including generating strong passwords for cyber security.

1. Fill in the missing numbers on each tree diagram. Then write out the prime factorization.
a.

$40=$ \qquad \times \qquad \times \qquad \times \qquad

$32=$ \qquad \times \qquad \times \qquad \times \qquad \times \qquad
2. Use tree diagrams to find the prime factorization of each number.
a.

LESSON 5: LONG DIVISION (DAY ONE)

Long Division Scramble

You Will Need:

- Lesson 5: Activity Sheet
- Scissors

You Will Do:

1. Carefully tear out the activity sheet from the back of the answer key. Cut the strips apart along the dashed lines.
2. Rearrange the strips to correctly show each long division problem. Have your parent check your answers.

In this lesson and the next, we will be reviewing long division. We use long division to systematically divide large numbers. Begin by reviewing the steps shown in the box to the right.

Because the problems are longer, some students have trouble remembering which step to do next. Remember that you continue to Divide, Multiply, Subtract, and Bring Down until you get to the end of the dividend.

STIFP FOR LONG DIVISION		
(D)	\div	Divide
M	\times	Multiply
S	-	Subtract
B	\downarrow	Bring down

EXAMPLE 1: Find the quotient.

Divide. We cannot divide 9 into 5 . However, 9 goes into 50 five times. Write the 5 above the zero.

M
$\begin{array}{r}5 \\ 9 \longdiv { 5 0 4 } \\ -45 \\ \hline 5\end{array}$
Multiply 9 by 5 . The product is 45 . Write that directly below and then subtract. There are 5 remaining.

$\frac{5}{9}$ $\frac{-45}{54}$	Bring down the 4.
$9 \lcm{504}$ $\frac{-45}{54}$ Divide 9 into 54. Nine goes into 54 six times. Write the 6 above the 4 in the ones column. Multiply and subtract. There is no remainder.	

EXAMPLE 2: Find the quotient.

D $\begin{gathered} \frac{1}{86} \end{gathered}$	Divide 5 into 8. It goes into 8 one time. Write the one above the 8.
	Multiply 5 by 1 . Write the product below and subtract. There are 3 remaining.
B $\begin{gathered} 1 \\ 5 \longdiv { 8 6 } \\ -5 \\ \hline 36 \end{gathered}$	Bring down the 6.
$\begin{aligned} & \begin{array}{l} 17 \\ \text { r. } 1 \\ 86 \\ -5 \\ \hline 36 \\ -35 \\ \hline 1 \end{array} \end{aligned}$	Divide 5 into 36 . Five goes into 36 seven times. Multiply and subtract. There is a remainder of 1 .

We can write the remainder using the letter "r" for remainder. Or, we can write the remainder as a fraction.
$86 \div 5=17$ r. 1
$86 \div 5=17 \frac{1}{5}$
When we write a remainder as a fraction, the remainder is the numerator and the divisor is the denominator.

Find each quotient. For answers with remainders, write the answer with the "r." notation and again as a fraction so you can practice both methods.

WARM UP

Today we will be using estimation to help us divide. Get ready for today's lesson by circling the number that is closest to each quotient below.
a. $2 1 \longdiv { 3 8 }$

135
c. $2 4 \longdiv { 5 2 }$

123
b. $\quad 1 6 \longdiv { 3 3 }$

123
d. $\quad 1 5 \longdiv { 8 5 }$

357

We will be practicing long division again in this lesson. The only difference is we will now solve problems with a two-digit divisor. We will follow the same four steps to do this: divide, multiply, subtract, and bring down.

When we divide in the first step, we will use estimation to help us decide how many times the divisor goes into the first part of our dividend. You also may need to do some multiplication on scratch paper on the side to check your estimate.

EXAMPLE 1: Find the quotient.

$2 1 \longdiv { 3 8 2 }$

Divide. We cannot divide 21 into 3 . We need to estimate how many times it will divide into 38 . We know that $21 \times 2=42$, which is too large. We will estimate that it goes into 38 one time.
$\begin{array}{cl}\frac{1}{21} \begin{array}{c}382 \\ -21 \\ 17\end{array} & \begin{array}{l}\text { Multiply } 1 \times 21 \text { and write thence is less than 21, } \\ \text { difference } \\ \text { correctly in the first step. }\end{array}\end{array}$

Another strategy is to use multiples to help you divide. You'll want to make a list of the multiples of the divisor on the side or on a separate sheet of scratch paper. One advantage of this method is that you can use the same list many times for the same problem. Let's work through an example to see how this can help you.

Common Mistake

If you do not divide correctly on the first step, you will have a difference that is larger than your divisor.

33 can still go 1 more time into 34 . We did not divide correctly on the first step.

Since we used 1 to start, we need to go back and increase that number to a 2 .

EXAMPLE 2: Find the quotient.

$3 3 \longdiv { 6 7 1 }$
Before we start the long division steps, we will make a list of the multiples of 33 .
$33 \times 1=33$
$33 \times 2=66$
$33 \times 3=99$
$33 \times 4=132$

Divide. We cannot divide 33 into 6 . We need to divide it into 67. Looking at our list of multiples, we can see that it will divide into 67 two times.

$\begin{array}{r} 2 \\ 3 3 \longdiv { 6 7 1 } \\ -\quad 66 \\ \hline 1 \end{array}$	Multiply 2×33 and write the product below. Subtract. The difference is less than 33, so we now know that we divided correctly in the first step.
$\begin{array}{r} 20 \\ 3 3 \longdiv { 6 7 1 } \\ -\quad 66 \\ \hline 11 \end{array}$	Bring down the 1 . We now need to divide 33 into 11. It is larger than 11, so we know it goes in zero times. Write the zero above.
$\begin{aligned} & \frac{20}{r} \text { r. } 11 \\ & 3 3 \longdiv { 6 7 1 } \\ & -66 \\ & \hline 11 \\ & -\quad 0 \\ & \hline 11 \end{aligned}$	Multiply. The product will be zero. Write this below. Subtract. There are 11 remaining. We can also write the answer using a fraction. $20 \frac{11}{33}$ Simplified the answer will be: $20 \frac{1}{3}$

1. Find each quotient. Use estimation to help you divide correctly.
a. $1 6 \longdiv { 3 3 9 }$
b. $\quad 1 5 \longdiv { 8 5 2 }$
c. $2 2 \longdiv { 3 7 5 }$
2. Find each quotient. A list of multiples is provided to help you divide correctly.
a. $2 4 \longdiv { 6 7 9 }$

$$
\begin{aligned}
& 24 \times 1=24 \\
& 24 \times 2=48 \\
& 24 \times 3=72 \\
& 24 \times 4=96
\end{aligned}
$$

3. Find each quotient. First, write out a list of the multiples on a separate sheet of paper and then divide.
a. $1 5 \longdiv { 4 6 7 }$
b. $2 2 \longdiv { 8 7 5 }$

EXPONENTS

Exponent Exploration

You Will Need:

- Beans (or another small counter to act out the problem)
- Calculator

You Will Do:

1. Brandon's grandmother offers him two options for his Christmas present. In option 1, he can choose to receive $\$ 30$. In option 2 , he can receive $\$ 2$ on the first day, $\$ 4$ on the second day, and $\$ 8$ on the third day, with the amount doubling each day for 10 days. Which option would you choose?

2. Act out the problem with your beans or another counter. Let each bean represent $\$ 1$. Write in the amount of money that Brandon would receive each day if he chooses option 2.

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
$\$ 2$	$\$ 4$	$\$ 8$							

3. Use your calculator to add up the total amount.

Total for Option 1: \$30
Total for Option 2: \qquad

You have already learned that you can use multiplication instead of doing repeated addition.

$$
3+3+3+3+3=15 \text { or } 3 \times 5=15
$$

But what about repeated multiplication? In the opening activity, the amount of money was multiplied by 2 each day. You could find the amount for the tenth day by multiplying by 2 ten times.

$$
2 \times 2
$$

We can write repeated multiplication like this using a base and exponent. A base is the number we are multiplying, and the exponent shows us the number of times we will multiply the base by itself. We write the exponent up and to the right of the base and in a smaller size.

BASE: The number we are multiplying by itself.
EXPONENT: The number that shows us how many times we need to multiply the base by itself.

We can also use exponents for an expression that has two different bases.

EXAMPLE 1: Write the expression using exponents. $4 \times 4 \times 4=$
The base is 4 and the exponent is 3 .
4^{3}

EXAMPLE 2: Write the expression using exponents. $3 \times 3 \times 6 \times 6 \times 6=$

We will use 2 different bases and 2 different exponents to write this expression.
$3^{2} \times 6^{3}$

EXAMPLE 3: Use your calculator to find the correct exponent. $5^{\square}=125$

We could make a list and use a calculator to check.
$5^{1}=5$
$5^{2}=5 \times 5=25$
$5^{3}=5 \times 5 \times 5=125$
The exponent is 3 .

1. Write the expression using exponents.
a. $3 \times 3 \times 3=$ \qquad
b. $6 \times 6 \times 6 \times 6=$ \qquad
c. $8 \times 8 \times 8 \times 8 \times 8=$ \qquad
d. $10 \times 10=$ \qquad
e. $5 \times 5 \times 5 \times 6 \times 6=$ \qquad
2. Write out the expression using repeated multiplication.
a. 7^{3} \qquad
b. 2^{3} \qquad
c. 5^{6} \qquad
d. $4^{3} \times 2^{5}$ \qquad
3. Use your calculator to find the missing exponent for each equation.
a. $2^{\square}=32$
b. $6^{\square}=1,296$
c. $3^{\square}=243$
d. $4^{\square}=256$

LESSON 8: SQUARES AND SQUARE ROOTS

Square Number Bingo

You Will Need:

- A pair of dice
- 2 players
- 2 colored pencils

You Will Do:

1. Player One rolls the dice and adds the numbers to get a result between 2 and 12. They then multiply the number by itself. For instance, if a 1 and 4 is rolled,
 then multiply 5×5 to get 25 . Player
One shades in any space with that product on the board below.
2. Player Two rolls and shades as well. If there is no available space to shade, then the turn is skipped.
3. The first player to get five spaces in a row vertically, horizontally, or diagonally wins. If no one gets 5 proper spaces, the one with the most colored spaces wins.

64	4	36	64	49
36	121	9	25	36
25	16	49	36	25
121	100	81	64	49
100	144	16	9	36

If you multiply a number by itself, the product is called a square number. The products are all amounts that can be formed into a square. These numbers can also be called perfect squares.

SQUARE NUMBER:

The result of multiplying a number by itself. Another name for these numbers is PERFECT SQUARES.

Square Numbers						
$1 \times 1=1$	$2 \times 2=4$	$3 \times 3=9$	$4 \times 4=16$	$5 \times 5=25$	$6 \times 6=36$	
					0	
					0	

We can also use exponents when we square numbers. The expression 3^{2} is read as 3 squared or 3 to the 2nd power and the expression 4^{3} is read as 4 cubed or 4 to the 3rd power.
$3 \times 3=3^{2}=9$

EXAMPLE 1: Find each square number.

$4^{2}=\quad 10^{2}=\quad 7^{2}=$
Write out each expression as repeated multiplication. Then, find the product.
$4^{2}=4 \times 4=16 \quad 10^{2}=10 \times 10=100 \quad 7^{2}=7 \times 7=49$

The opposite of squaring a number is finding the square root. When we find a square root, we ask ourselves, "What number could I square to get this product?" The symbol for square root is unique. It looks a bit like the long division symbol, but has a small check mark at the bottom.

SQUARE ROOT: the number that can be multiplied by itself to give the original number. For example, the square root of 36 is 6 , because $6 \times 6=36$.
The symbol for square root is $\sqrt{ }$.

The square root of 81 is 9 , because if we square 9 (multiplying 9 by itself) we will get 81 .

EXAMPLE 2: Find the square root of each number.

$\sqrt{4}=\quad \sqrt{49}=\quad \sqrt{64}=$
We need to think of what number we can square to get each of the results that are under the square root sign.
$\sqrt{4}=2 \quad \sqrt{49}=7 \quad \sqrt{64}=8$

1. Square each of the numbers below.
a. 8^{2} \qquad
b. $\quad 11^{2}$ \qquad
\qquad d. 13^{2} \qquad
2. Find each square root.
a. $\quad \sqrt{9}=$ \qquad b. $\sqrt{1}=$ \qquad
c. $\sqrt{81}=$ \qquad
d. $\sqrt{25}=$ \qquad
e. $\sqrt{100}=$ \qquad
f. $\sqrt{169}=$ \qquad
g. $\sqrt{4}=$ \qquad
h. $\sqrt{16}=$ \qquad
3. A square tile has a side length of 9 inches. What is the area of the tile in square inches?
4. The area of a square garden is $\mathbf{2 5}$ square feet. What is the length of one side of the garden?
5. A square blanket has an area of $\mathbf{3 6}$ square feet. What is the length of one side of the blanket?

CHALLENGE!

Two square numbers have a sum of 25 . What are the two numbers?

LESSON 9: THE ORDER OF OPERATIONS (DAY ONE)

Order of Operations Foldable

You Will Need:

- Lesson 9: Activity Sheet
- Scissors
- Colored pencils

You Will Do:

1. Carefully tear the activity sheet out of the back of the answer key and cut along the dashed lines. Cut slits on the smaller dashed lines and fold along the solid lines so that the images show on the outside and the large letters are on top of the step descriptions.
2. Color in the arrows above the "multiplication and division" and "addition and subtraction" steps. This is to remind you to always work from left to right.
3. Draw in parentheses and brackets on the top right flap.
4. Write two more examples of exponents on the exponents flap.
5. Look at the large letters on the top of your foldable. They spell PEMDAS. This acronym is one way students remember the order of operations.
6. You will fill in the inside of the foldable after reading today's lesson.

The order of operations is an agreed upon order mathematicians use when working on problems. They created the order to make sure all mathematicians arrive at the same answer every time. You have worked with 3 steps of the order of operations before, but now you will learn the entire order.

The Order of Operations

1. Perform operations that are in grouping symbols.
2. Evaluate exponents.
3. Multiply and Divide (from left to right).
4. Add and Subtract (from left to right).

THE ORDER OF OPERATIONS:
This is an agreed upon order for doing math problems.

EXAMPLE 1: Evaluate the expression. 20 - $10 \div 2$

There are no parentheses or exponents. We can skip the first $20-10 \div 2$ step. We now need to multiply or divide from left to right. There is no multiplication. We need to divide. $10 \div 2=5$

Now we do addition and subtraction from left to right. There is no addition. We need to subtract.

We have arrived at an answer that all mathematicians would agree to. Do you see how this is different from 20-10=10 then $10 \div 2=5$. Mathematicians must agree on the order to always arrive at the same answer!

EXAMPLE 2: Evaluate the expression. $3 \times 5^{2}+4 \times(2+4)$

$3 \times 5^{2}+4 \times 6$
Our first step is to do whatever is inside of grouping symbols. In this example we have parentheses. $2+4=6$
$3 \times 25+4 \times 6$ Next, we need to evaluate the exponent. $5^{2}=5 \times 5=25$
$75+24$
Now, we multiply (or divide) working from left to right.
$3 \times 25=75$ and $4 \times 6=24$

99
Finally, we add (or subtract) working from left to right.
$75+24=99$

EXAMPLE 3: Evaluate the expression. $3+\left(4^{2}-10\right)$
Our first step is to do whatever is inside of the parentheses. There are two operations. When this happens you start again $3+(16-10)$ at the beginning of the order of operations. There are no more grouping symbols so we will evaluate the exponent first. Now, we subtract within the parentheses. $16-10=6$

$$
3+6
$$

Finally, we evaluate this problem and see we need to add to get the final answer. $3+6=9$

Fill in the inside of your foldable following the order of operations shown in the above examples.

Evaluate each expression. Remember to use PEMDAS through each stage of solving. Look at your foldable if you need help remembering the steps.

a. $5+21 \div 3 \times 2$	b.	$9+(62-12)$
c. $33 \div(15-4)+3$	d. $(7+42)-2 \times 3$	
$16+12 \div 4-2^{2}$	f.	$81 \div 3^{2}$
e.		

WARM UP

The first letter of each step in the order of operations is written below. Do your best to write in the name of each step. Then, use your foldable from the last lesson to fill in any steps you forgot.

P

E \qquad

M/D \qquad
\qquad
A/S \qquad /

1. Evaluate each expression. Use your foldable to help you remember the steps.

a. $\quad 5 \times(5+1)-7$
b. $\left(8+2^{2}\right) \div 3+9$
c. $4 \times 3+(9-9)+3^{2}$
d. $20+10 \div 2-3^{2}$
e. $21 \div(15-8)+10$
f. $64 \div\left(2^{2}+4\right)$

WARM UP

Evaluate each expression.
a. $10^{2}+(12 \div 4)$
b. $64 \div 4^{2}$

The Distributive Property states that multiplying a number by a group of numbers added together is the same as doing each multiplication separately. It can help us do many math problems mentally. It will also be essential in helping you do more complicated math in the future. Master breaking down simple problems now and becoming comfortable with it so that eventually it becomes second nature to you. Let's see why the property works.

$$
10 \times(3+2)=10 \times 5=50 \quad 10 \times 3+10 \times 2=30+20=50
$$

THE DISTRIBUTIVE PROPERTY:

Multiplying a number by a group of numbers added together is the same as doing each multiplication separately.

EXAMPLE 1: Find the product of $\mathbf{7 \times 5 6}$ mentally.

Start by breaking the number 56 apart. We can do this by putting the addition inside parentheses.
7×56
$7 \times(50+6)$
$7 \times 50+7 \times 6$
To multiply 7 times 50 , think of 7×5, and then add a zero on the end.
$350+42=392$

Rewrite each multiplication problem by breaking the second factor apart. Then multiply mentally by using the Distributive Property.
a. 5×46
b. 6×34
\qquad
\qquad $6 \times($ \qquad $+$ \qquad
c. 3×23
3×1 \qquad
d. 8×41
8×1 \qquad $+$ \qquad)
e. 7×31
7×1 \qquad $+$ \qquad)
f. $\quad 9 \times 33$
$9 \times($ \qquad $+$ \qquad)

ค. 7×52
$7 \times($ \qquad $+$ \qquad

SKILLS CHECK

You have been working with multiples and factors as part of the Unit 1 skills practice. Here are a few more for you to try.

1. List the next 5 multiples of each number.
a. 4,8 , \qquad , \qquad , \qquad
\qquad ,
b. 7,14 , \qquad , \qquad
\qquad , \qquad ,
2. Find all the factors of the given number.
a. 24
b. 35
3. Find each product or quotient.
a. $\begin{array}{r}4,516 \\ \times \quad 3 \\ \hline\end{array}$
b. $4 \longdiv { 2 3 }$
c.
34
d. $2 4 \longdiv { 4 9 1 }$
4. Evaluate each expression.
a. $9 \div 3+2=$
b. $4^{2}-9+6=$
5. Use mental math to find the product.
4×83

TABLE OF CONTENTS

Daily Schedule 4
Introduction 10
Daily Skills Practice Overview 12
Unit 1: Whole Numbers, Decimals, and Fractions 15
Chapter 1: Whole Numbers, Decimals, and Fractions 18
Chapter 2: Multiplication, Factors, and Multiples 25
Chapter 3: Fractions 30
Unit 2: Ratios, Rates, and Percents 39
Chapter 4: Ratios and Rates 41
Chapter 5: Percents 47
Unit 3: Measurement, Data, and Probability 56
Chapter 6: Measurement and Conversions 58
Chapter 7: Displaying and Analyzing Data 63
Chapter 8: Probability 69
Unit 4: Negative Numbers 73
Chapter 9: Introduction to Negative Numbers 75
Chapter 10: Operations with Negative Numbers 80
Unit 5: Introduction to Algebra 89
Chapter 11: Algebraic Expressions and Equations 91
Chapter 12: Inequalities. 100
Chapter 13: Graphing Equations 105
Unit 6: Geometry 112
Chapter 14: Area of Two-Dimensional Figures 114
Chapter 15: Three-Dimensional Figures 121
Test Answers 128
Problem Solving Handout 137
Consumable Pages 139
Chapter Tests 243
Supply List 273

WEEKBY-WEEK DAILY SCHEDULE

Below is a suggested weekly schedule to help you stay on track. It uses a four-day week to leave room for a co-op day or a review day. This schedule covers 36 weeks, but we encourage you to adjust it to the needs of your child and your family's calendar.

Week	Day 1	Day 2	Day 3	Day 4
	UNIT 1 INTRO CHAPTER 1 Lesson 1 Skills practice: multiples and factors	CHAPTER 1 \square Lesson 2 Skills practice: multiples and factors	CHAPTER 1 \square Lesson 3 Skills practice: multiples and factors	CHAPTER 1 \square Lesson 4 Skills practice: multiples and factors
	CHAPTER 1 \square Lesson 5 Skills practice: multiples and factors	CHAPTER 1 \square Lesson 6 Skills practice: multiples and factors	CHAPTER 1 \square Lesson 7 Skills practice: multiples and factors	CHAPTER 1 \square Lesson 8 Skills practice: multiples and factors
	CHAPTER 1 \square Lesson 9 Skills practice: multiples and factors	CHAPTER 1 Lesson 10 Skills practice: multiples and factors	CHAPTER 1 Lesson 11 Skills practice: multiples and factors	CHAPTER 1 \square Chapter Review
	CHAPTER 2 \square Lesson 12 Skills practice: long division	CHAPTER 2 \square Lesson 13 Skills practice: long division	CHAPTER 2 \square Lesson 14 Skills practice: long division	CHAPTER 2 Lesson 15 Skills practice: long division

TEACHER'S NOTES UNIT I:WHOLE NUMBERS, DECIMALS, AND FRACTIONS

Unit One moves through a broad range of topics. Much of the content was introduced in previous Math Levels 4 and 5, but all kids need the review and reinforcement. And in some cases, more challenging problems are added in, like with the mixed number lessons. This unit lays the foundation for the rest of the year and for much of middle school-level mathematics.

SUPPLY LIST

```
Skills Practice:
Colored pencils
A Numbered cards 3-10 (such as
        Uno® cards or playing cards)
-> Notecards
-> Factor table worksheets
        (available on the Book Extras
    website)
L Long division worksheets
        (available on the Book Extras
        website)
C Prime factorization worksheets
        (available on the Book Extras
        website)
Chapter One:
->2 players
-> Colored pencils
A Numbered cards 3-10
C Scissors
Beans (or another small counter)
Calculator
Dice
G Glue
```


Chapter Two:

\rightarrow Scissors
\rightarrow Game pieces
$\rightarrow 2$ or more players
\rightarrow Scratch paper
\rightarrow A takeout menu
\rightarrow A calculator

Chapter Three:

\rightarrow Scissors
$\rightarrow 2$ players
\rightarrow An envelope
\rightarrow Dominoes
$\rightarrow 2$ players
$\rightarrow 2$ different colored counters (this can be snacks or small game pieces)
\rightarrow Dice
\rightarrow Fraction tiles
\rightarrow Graham crackers
\rightarrow A recipe
\rightarrow Markers

SKILLS PRACTICE FOR UNIT ONE: WHOLE NUMBER OPERATIONS

As mentioned at the beginning of this book, the skills practice reviews skills that have already been introduced in this book. There is one exception, and that is the Unit One skills practice. The skills reviewed here were covered in previous levels of Exploring Creation with Mathematics. If you are switching programs, it is possible you haven't covered this material before. You may find the pace of the review is too quick for your child. Please adjust the pacing. These concepts are very important, and it would be better to review them thoroughly than just push forward.

Skill One: Multiples and Factors

I cannot overemphasize the importance of students grasping multiples and factors. These concepts are interwoven through so much of mathematics. Polish this skill before students need to use them, such as when they work with fractions in Chapter 3.

1. Play "The Most Multiples" from Lesson 1. You can print additional game boards from the Book Extras website.
2. Print factor table worksheets off the Book Extras website.
3. Choose a number between 1 and 10 , and have your child skip count to list all the multiples. This is just a quick activity that can be done verbally before starting the lesson for that day. Most students at this level will mainly need to focus on 4's, 6's, 7's, and 8's. Target the fact families your child seems to struggle with.

Skill Two: Long Division

Long division takes time to master. It also can be very taxing because it is such a long process. That is why I think long division is a perfect skill for the skills practice. Give your child one quick problem or activity each day. Spreading it out ensures they will master it without overwhelming them with an entire page of long division problems.

1. Notecard problems. This is one of my favorite ways to do the skills practice when the skill itself is pretty taxing. I just write out one problem on a notecard or post-it. Have your child do that one problem before starting the lesson. Here are problems you can use. There are enough for the whole skills practice.
96
$9 \longdiv { 8 6 4 }$

2. There are long division worksheets available on the Book Extras website.
3. Find the missing digit puzzles. These are available on the Book Extras website. Instead of solving an entire long division problem, students just need to fill in the missing digits. It helps reinforce the steps of the process in a way that is less challenging.

Skill Three: Prime Numbers and Prime Factorization

Knowing the prime numbers up to 100 is a huge advantage for students. Minimally, they should know all of them up to 25 . And prime factorization is a skill that takes some practice before it becomes automatic.

1. Have your child recite the prime numbers up to 100 (or 25) to you. The list is below so you can quickly check, or they can self-check. Consider offering them a prize if they can recite or write all the prime numbers under 100 by the end of the unit.
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67$, 71, 73, 79, 83, 89, 97
2. Have your child choose any number under 100 and write out the prime factorization. They can check their answer by multiplying on a calculator. There is an example below.

$$
36=2 \times 2 \times 3 \times 3
$$

3. There are prime factorization worksheets on the Book Extras website.

CHAPTER 1: WHOLE NUMBERS, DECIMALS, AND FRACTIONS

LESSON 1

This lesson is probably review for your student. It is helpful to have a gentle entry into a new level of mathematics. Multiples are foundational for finding the common denominator in future fraction lessons. There are additional copies of the game board on the Book Extras website so that you can play this game as part of the skills practice.

Page 16 Answers

LESSON 2

When students make mistakes in multi-digit multiplication, they often make the mistake repeatedly. Common mistakes include mixing up the regrouping and not realizing they are multiplying by a number in the tens place. The code in the practice helps students catch mistakes before they do the entire page incorrectly. You also might want to let your child check his or her work with a calculator.

Page 17 Answers

Page 20 Answers

LESSON 3

Factors are so essential in mathematics.
Students will continue to review factors in the Unit 1 skills practice. This skill will be essential when they factor quadratics in high school. More immediately, they will need to be able to identify common factors when simplifying fractions.

Page 24 Answers

LESSON 4

Some students will really prefer this method of factoring to what we did in the previous lesson. The beauty of it is that you can split the number in many different ways and still arrive at the correct answer. All of the work with primes will also help them start to identify prime numbers more quickly.

Page 25 Answers

Page 29 Answers

LESSON 5

Students have seen long division before in previous levels. But it is very common for students to struggle to remember all of the steps, or to just get rusty on the process after a break. This first lesson only uses one-digit divisors.

Activity Sheet Answers

Page 32 Answers

LESSON 6

Now we are working with two-digit divisors. Estimation is going to be very key as we think about placing the first digit in the quotient.

Page 33 Answers

Page 36 Answers

LESSON 7

It is very common for students to mix up exponents with multiplication. For instance, a student might mistakenly write $2^{3}=6$. The best way to combat that is to keep having students write out what the exponent represents, $2^{3}=2 \times 2 \times 2$, until it really clicks.

Page 37 Answers

Page 39 Answers

LESSON 8

I love teaching this concept visually with squares and the sides of squares. It is also really important to emphasize the inverse relationship between the two operations. Inverse operations are a key overarching concept in mathematics and will become essential when students start solving equations.

Page 42 Answers

Page 43 Answers

1		ussows
	3. A seubse tile his a side length of 5 inches. What is the area of the the in sequare inthes? 81 square inches	
	4. The area of a seowe garien is as square feet. What is the length of one slide of the garben?	
	5. A seuase Blanket has an anea of 36 square feet. What lis the length of one slde of the Dlanket? 6 feet	
	Challeneet Teq square nombers have a sum of 25. What are the twe numbers? $9+16$	
		43

LESSON 9

Some students think of Please Excuse My Dear Aunt Sally to remember the acronym PEMDAS.

One of the most common mistakes when solving order of operations problems is to not realize that you do addition and subtraction together from left to right. The same goes for multiplication and division. If there is a division sign to the left of a multiplication sign, that is what you do first.
$10 \div 5 \times 3=$
$2 \times 3=$

6

Page 46 Answers

LESSON 10

Another day of practice with the order of operations. Most students will need this second day to really grasp the steps.

Page 47 Answers

LESSON 11

Students are introduced to the Distributive Property in this lesson so that they can multiply facts like 8×42 mentally. This increases their number sense. But, the second reason is to give them some background with the distributive property before seeing it applied algebraically. That will come later in this book.

Page 48 Answers

Page 49 Answers

CHAPTER 1 REVIEW

The Chapter 1 review is a quick way for you to see if your child is mastering the material. If they seem to be struggling with any of the concepts, you might want to take a day to review before moving onto the unit project.

An optional Chapter 1 test is provided in the back of this answer key. If you plan to use it, give it to your child after he or she has completed the chapter review.

Page 50 Answers

CHAPTER 2: MULTIPLICATION, FACTORS, AND MULTIPLES

LESSON 12

They play the game in this lesson using tenths. They will play it again in the next lesson with subtraction and in Lesson 13 with hundredths.

Page 54 Answers

Page 55 Answers

LESSON 13

Now students are subtracting and moving backward on the gameboard.

Page 57 Answers

Page 58 Answers

Page 59 Answers

LESSON 14

Adding hundredths repeatedly can quickly become complicated. That is why I have them round the answers. It also allows them to use the same gameboard. Rounding is a skill that students struggle with consistently, so it is good for them to have some practice with it in this game.

Page 62 Answers

Page 63 Answers

LESSON 15

In Level 5 of this series, students are shown the why behind ignoring the decimal points and then counting the spaces at the end. At this level, it is time to just practice the trick until it becomes automatic.

Page 64 Answers

Page 66 Answers

LESSON 16

This lesson was inspired by many personal experiences where I have been asked to "figure out the bill" for a group of friends since I am the math person in the group. I'm on a mission to empower everyone to be able to figure this stuff out on their own.

Page 67 Answers

Page 70 Answers

LESSON 17

In addition to teaching a new skill, this lesson is also a great review of the long division process.

Page 71 Answers

Page 74 Answers

LESSON 18

We definitely need a review lesson after all of those decimal skills. And why not teach some money management at the same time? That was a bonus for all of you parents. Additionally, kids are far more motivated to do math when given a context like the one in this lesson.

Page 75 Answers

Page 76 Answers

Page 77 Answers

LESSON 19

In each unit there will be one problemsolving lesson. There is a complete description of this program element in the beginning of this book. The main thing to keep in mind is that the process is more important than the results. Your child can be making a lot of progress but still not find the right answer.

Page 81 Answers

CHAPTER 2 REVIEW

The Chapter 2 review is a quick way for you to see if your child is mastering the material. If they seem to be struggling with any of the concepts, you might want to take a day to review before moving onto the unit project.

An optional Chapter 2 test is provided in the back of this answer key. If you plan on using it, give it to your child after he or she has completed the chapter review.

Page 82 Answers

CHAPTER 3: FRACTIONS

LESSON 20

Mathematicians have to be able to switch between different forms of a number fluently. In this lesson, we are focused on fractions and decimals. Later on in this course, we will add in percents. And in all three cases, memorizing some benchmarks really helps.

Page 87 Answers

LESSON 21

The two main repeating decimals to memorize are $1 / 3=0.3333 \ldots$ and $2 / 3=0.66666 \ldots$
Because of this, there are two new cards included to be added to the game from Lesson 20.

The four operations needed on your calculator are addition, subtraction, multiplication, and division. Any simple and inexpensive calculator will have these.

Page 88 Answers

Page 92 Answers
usson 21 newemo ecamas

- $\frac{4}{5}-0.8 \quad-\frac{33}{100}-\frac{0.33}{0}$
$={ }_{3}^{2} \cdot 0 . \overline{6} \quad-\frac{2}{6}=0 . \overline{2}$
- $\frac{3}{10}$ - $0.3 \quad, \frac{5}{8}-0.625$
$+\frac{1}{3}-0 . \overline{3} \quad-\frac{3}{11}-\frac{0 . \overline{27}}{0}$
$\frac{4}{9}-0 . \overline{4} \quad+\frac{9}{20}-\frac{0.45}{}$

4. Une leng divilion to coevert the two fractions below to decimali.

5. Une the Lessen ar activity sheet then the back of Be answer
 Lesson 20, and play one nound of memary with the new card n

Page 91 Answers

LESSON 22

To add and subtract fractions, you essentially "unsimplify" them so that you can perform the operation. Because of this, you often must simplify again at the end when you have your answer.

Page 93 Answers

Page 95 Answers

LESSON 23

Bear with your student in this lesson. There are many layered skills when you add and subtract mixed numbers. There is regrouping in addition to all the skills they just practiced in Lesson 22.

Page 99 Answers

Page 100 Answers

	[$2 \frac{9}{10}$ $2 \frac{9}{10}$ $-1 \frac{2}{2}$ $-1 \frac{10}{10}$ $\frac{5}{10}$ $=2 \frac{1}{2}$	

LESSON 24

I added a second day of mixed numbers because most students will need it. And this concept has built in review of regrouping and simplifying fractions.

Page 101 Answers

Page 103 Answers

Page 104 Answers

LESSON 25

While it is harder to grasp conceptually, multiplying fractions is a much easier operation to execute. This lesson will probably feel much more manageable than what we have been working on earlier in the chapter. This lesson is also laying the groundwork for the skills students will need when converting units in future science classes.

Page 105 Answers

Page 109 Answers

Page 106 Answers

Page 110 Answers

LESSON 26

The key skill in this lesson is being able to convert between improper fractions and mixed numbers. That will come up again in Lesson 27.

Page 111 Answers

Page 113 Answers

LESSON 27

I love the visual of the opening activity. I don't think I ever really understood what dividing by a fraction meant until I was out of school. Fraction tiles make it so much easier to picture what is happening and why flipping the fraction and multiplying gives you the correct answer.

Page 114 Answers

Page 116 Answers

Page 117 Answers

116

LESSON 28

This lesson is very similar to Lesson 15 . The only difference is that the quotients are mixed numbers.

Page 118 Answers

Page 120 Answers

brabe whece muwbess with nuflion aybyron Find esel quetient. Wite your answer as a miend numbers	
$\begin{array}{r} 4 \frac{1}{2} \\ 26 \\ -\quad 8 \\ \hline 1 \end{array}$	$\begin{array}{r} 1 \frac{3}{5} \\ -\quad 5 \\ \hline 3 \end{array}$
$\begin{array}{r} 6 \frac{1}{4} \\ =\quad 425 \\ -\quad 24 \\ \hline 1 \end{array}$	$\left.\begin{array}{r}11 \frac{5}{7} \\ 7 \\ -7 \\ \hline-72 \\ -7 \\ \hline\end{array}\right)$
$\begin{array}{r} 6 \frac{3}{5} \\ 533 \\ -\quad 30 \\ \hline 3 \end{array}$	- $\begin{array}{r} \\ \begin{array}{r}5 \frac{1}{4} \\ 4 / 21 \\ -20 \\ \hline 1\end{array}\end{array}$
$\begin{array}{r} 13 \frac{2}{3} \\ \begin{array}{r} 341 \\ -\quad 3 \\ \hline 11 \\ -\quad 9 \\ \hline 2 \end{array} \end{array}$	$\begin{aligned} & 12 \frac{2}{7} \\ & \times \quad-7 \\ & \hline 16 \\ &-14 \\ & \hline \end{aligned}$
126	

LESSON 29

Again, in this lesson students have to be able to switch between mixed numbers and improper fractions and back again. Converting between different forms of a number is a key skill in mathematics.

Page 121 Answers

Page 124 Answers

LESSON 30

This lesson is just a mix of review, so students have another opportunity to practice.

Page 125 Answers

Page 126 Answers

CHAPTER 3 REVIEW

The Chapter 3 review is a quick way for you to see if your child is mastering the material. If they seem to be struggling with any of the concepts, you might want to take a day to review before moving onto the unit project. An optional Chapter 3 test is provided in the back of this answer key. If you plan on using it, give it to your child after he or she has completed the chapter review.

Page 127 Answers

Page 128 Answers

UNIT 1 PROJECT

Students can make any type of design that they like. This art connection is a fun change of pace after so much decimal and fraction work.

Page 129 Answers

Page 130 Answers

COMPLETE SUPPLY LIST

\rightarrow Fraction tiles	\rightarrow A bobbin	\rightarrow World almanac or
\rightarrow A protractor	\rightarrow A chenille stem	access to the internet for research
\rightarrow Colored pencils	\rightarrow A small plastic cup	\rightarrow A printer
\rightarrow Numbered cards 3-10	\rightarrow A pair of sharp scissors or a knife	$\rightarrow 3$ sheets of $8.5 \times 11^{\prime \prime}$
ards		colored paper
\rightarrow Scissors	\rightarrow	\rightarrow A stapler
\rightarrow Beans	\rightarrow Measuring tape	\rightarrow A sheet protector
\rightarrow Four-operation calculator	\rightarrow Pennies, marbles, or other small weights	\rightarrow A ruler
\rightarrow Dice	\rightarrow Several food items	\rightarrow A highlighter
$\rightarrow \text { Glue }$	from your refrigerator or pantry	\rightarrow A set of 3D shapes (including a sphere,
\rightarrow Game pieces	\rightarrow A store flyer or	cone, a cylinder, d several types of
\rightarrow A takeout menu	magazine	pyramids and prisms)
\rightarrow An envelope	\rightarrow A tape measure	\rightarrow A box (it can be any
\rightarrow Dominoes	\rightarrow Ice cubes	size)
\rightarrow Graham crackers	\rightarrow Salt, sugar, baking soda	\rightarrow Rectangle or square shapes (magnetic
A recipe	$\rightarrow 5$ transparent cups	tiles, the green
\rightarrow Markers		angles from a
\rightarrow Bingo chips	\rightarrow A tablespoon	triangles that are the
\rightarrow A paper clip	\rightarrow A permanent marker	same size and shape
\rightarrow A miniature bag of Skittles ${ }^{\circledR}$	\rightarrow A permanent marker \rightarrow Colored pencils	cut out of cardboard) \rightarrow A refrigerator (or
\rightarrow Fruit salad	\rightarrow Glue stick	
\rightarrow A bowl	\rightarrow A deck of cards	easure, like a deep
\rightarrow A quarter	\rightarrow A Monopoly ${ }^{\text {™ }}$	freeze or a dresser)
\rightarrow Four different kinds of beverages	gameboard \rightarrow An analog thermometer	\rightarrow A bag of small marshmallows
\rightarrow Similar items from two different grocery stores	\rightarrow Masking tape \rightarrow Sticky notes	\rightarrow Several pieces of card stock or thick paper
\rightarrow Thick string, yarn, or a thin piece of ribbon	$\rightarrow 2$ blank sheets of poster board	

