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Counting Principles

Introduction
Counting is the oldest and most basic concept in math. Many important developments in counting 
principles have occurred in recent years. Computer technology has allowed solutions to previously 
impractical or unsolvable problems through these principles.

We shall begin this LIFEPAC® with a look at progressions, which represent real situations and are tools for 
more advanced math. Permutations and combinations are used in solving many problems that ask, “How 
many ways are possible?” These two concepts also provide the necessary background for the fascinating 
study of probability. Probability is one of the most important counting principles used in business and 
science.

Objectives
Read these objectives. The objectives tell you what you will be able to do when you have successfully com-
pleted this LIFEPAC. When you have finished this LIFEPAC, you should be able to:

1.	 Write the general term of a sequence.

2.	 Identify arithmetic and geometric series.

3.	 Use factorial notation.

4.	 Find the number of ways items can be arranged.

5.	 Find the number of ways a group can be subdivided.

6.	 Define probability.

7.	 Compare probabilities.
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Survey the LIFEPAC. Ask yourself some questions about this study and write your questions here.

________________________________________________________________________________________________________________
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________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________

________________________________________________________________________________________________________________
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1.	 PROGRESSIONS
The natural numbers are those numbers you used when you first learned to count; that is, the positive 
integers. Notice that neither negative numbers nor zero nor fractions are included. The natural numbers 
begin with 1 but have no ending; hence, they are infinite.

The word progression can refer to either a sequence or a series. A sequence is an arrangement of 
quantities whose positions are based upon the natural numbers. A series is a summation of quantities 
based upon a sequence.

Section Objectives
Review these objectives. When you have completed this section, you should be able to:

1.	 Write the general term of a sequence.

2.	 Identify arithmetic and geometric sequences.

SEQUENCES
One type of progression is a sequence. After you have studied the definition of a sequence, the form for 
the general term of a sequence will be presented.

DEFINITIONS

	 Sequence:  �A group of numbers arranged in a definite order, with a specific first term.

	 Term:  �An individual quantity or number in a sequence.

Consider this sequence:

	 2,  4,  6,  8,  10

This sequence is different from

	 2,  6,  4,  8,  10

because the order is different even though the same numerals appear in both sequences.

Each individual quantity or number is called a term, and the terms are separated by commas. The ordering 
of the terms is a one-to-one correspondence between the terms and the natural numbers.
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Although the position of a term in a sequence is given by a natural number, the term itself may be any 
number. The following sequences are all valid sequences.

Models:	 1,  1 1__
2 ,  2,  2 1__

2 ,  3

	 -3,  0,  3,  -2,  0,  2,  -1

	 2a + 1,  2a + 2,  2a + 3,  2a + 4

	 π,  1__
2π,  1__

3π,  1__
4π,  1__

5π,  1__
6π  

	 0.31,  0.61,  0.91,  1.21

All the models given have had a last term; therefore, the sequences were finite. We can represent an 
infinite sequence by writing the first few terms followed by three periods. The sequence of positive odd 
integers could be written

	 1,  3,  5,  7,  ...

We can also adapt this notation to finite sequences with many terms. For example, powers of 2 in order up 
to 256 are written

	 2,  4,  8,  16,  ...  256.

Complete these activities.

1.1 	 The natural numbers are ___________________________________________________________________________ .

1.2 	 A sequence is _______________________________________________________________________________________ .

1.3 	 Give an example of a finite sequence.  ______________________________________________________________

1.4 	 Give an example of an infinite sequence.  ___________________________________________________________

1.5 	 Why are the following numbers not a sequence?    ... -4,  -2,  0,  2,  4,  ...

	 _______________________________________________________________________________________________________

GENERAL TERM
Consider the following sequence:

	 2__
3 ,  3__

4 ,  4__
5 ,  ...

We would probably expect that the fourth term of this sequence would be 5__
6 . We say “probably” because to 

indicate a pattern simply by listing a few terms is not mathematically precise. If we only wrote three terms, 
we could not distinguish between the following two sequences:

	 1,  2,  3,  4,  5,  6,  ...

and

	 1,  2,  3,  1,  2,  3,  ...

Naturally, we want to be more precise. We can be more precise by writing the general term of the 
sequence.
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The general term of a sequence is a formula that yields the value of a term when that term’s position is 
substituted into it. In the sequence

	 3,  5,  7,  9,  ...  2n + 1,  ...

the first term is (2 • 1) + 1 = 3, the second term is (2 • 2) + 1 = 5, the 103rd term is 207, and so on. Computations 
of any term given the general term is almost trivial. Often a sequence is simply referred to by its general 
term since the sequence is completely described by the general term. Thus

	 3,  6,  9,  12,  ...  3n,  ...

is referred to as the sequence 3n.

DEFINITION

	 General term of a sequence:  �A formula that yields the value of a term when the term’s position 
in the sequence is substituted into the formula.

To write the general term from a partial listing of terms of a sequence or from a pattern described in words 
or phrases, however, is not trivial. A unique general term may not exist for a partial listing of terms, since 
any formula that fits this partial list is a correct one. Usually, however, the pattern is clear from the context.

The natural numbers are

	 1,  2,  3,  4,  ...  n,  ...

and the odd positive integers are

	 1,  3,  5,  7,  ...  2n − 1,  ...

Notice the general term was obtained by subtracting 1 from the general term for the even positive integers. 
The sequence

	 -1,  1,  -1,  1,  -1,  1,  ...

has (-1)n as its general term. Thus, we can use either (-1)n or (-1)n + 1 as a factor in the general term of any 
sequence that alternates in sign. Which factor we use depends on whether the first term is negative or 
positive.

If you determine that subtracting any two successive terms of a particular sequence always gives a constant, 
then the general term of that sequence will have that constant as a factor of n.

	 7,  10,  13,  16,  ...  3n + 4, ...

If the result of dividing successive terms of a particular sequence is a constant, then the general term of that 
sequence will have that constant raised to a power of n.

	 3,  9,  27,  81,  ...  3n 

HINTS FOR FINDING THE GENERAL TERM

	 A.	 Alternating sign:	 (-1)n or (-1)n + 1 as a factor
	 B.	 Constant difference:	 constant as a factor of n 
	 C.	 Constant ratio:	 constant raised to a power of n 
	 D.	 Common factor:	 factor in general term
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Complete these activities.

1.6 _ Write an example of two sequences that have the same first four terms, but different terms 
thereafter.

_ ________________________________________________________________________________________________________

_ ________________________________________________________________________________________________________

1.7 _ What are the sixth and seventh terms of the following sequences?

	 a.	 5,  8,  11,  14,  ...  3n + 2,  ...	 _________________________	 _________________________

	 b.	 a,  -a,  a,  -a,  a,  ...  (a)(-1)n + 1,  ...	 _________________________	 _________________________

	 c.	 1,  1__
8 ,  1___

27,  1___
64,  ...  1___

n3 ,  ...	 _________________________	 _________________________

	 d.	 4,  16,  64,  256,  ...  4n,  ...	 _________________________	 _________________________

1.8 _ Write an example of an alternating sequence.

_ ________________________________________________________________________________________________________

1.9 _ Write a general term for these sequences.

	 a.	 2,  4,  8,  16,  ...  	 ______________________________________________________

	 b.	 50,  100,  150,  200,  ...  	 ______________________________________________________

	 c.	 6a,  3a,  0,  -3a,  -6a,  ...  	 ______________________________________________________

	 d.	 -0.1,  +0.2,  -0.3,  +0.4,  ...  	 ______________________________________________________

	 e.	 4__
3 ,  5__

4 ,  6__
5 ,  7__

6 ,  ...  	 ______________________________________________________

SERIES
A series is a summation of terms of a sequence. For example,

	 1,  3,  5,  7,  ...  2n − 1,  ...  13

is a sequence; and

	 1 + 3 + 5 + 7 + 9 + 11 + 13

is the associated series.

DEFINITION

	 Series (plural, series):  �The summation of the terms of a sequence.
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NOTATION
A term of a series or the general term of a series is the same as the corresponding term in its sequence. 
A series may be finite or infinite just as a sequence. We indicate infinite series in a similar manner to 
sequences:

	 3 + 6 + 9 +  ...  3n +  ...  

A convenient notation for summation is the Greek letter sigma

	 ∑
followed by the general term. The notation shown

 5

∑ (4n − 3) = 1 + 5 + 9 + 13 + 17
  n = 1

is read, “The sum of (4n − 3) as n varies from 1 to 5.” An infinite series in summation notation, as shown,

 ∞
∑ (4n − 3) = 1 + 5 + 9 +  ...  (4n − 3) +  ...

  n = 1

uses the symbol ∞ for infinity and is read, “The sum of (4n − 3) as n increases without end.”

Complete these activities.

1.10 _ Define series.

_ ________________________________________________________________________________________________________

_ ________________________________________________________________________________________________________

1.11 _ Write an example of 

	 a.	 an infinite series  ________________________________________________________________________________

	 b.	 a finite series  ___________________________________________________________________________________

1.12 _ Write the two examples in Problem 1.11 using the summation notation.

	 a.	 ___________________________________________________________________________________________________

	 b.	 ___________________________________________________________________________________________________

1.13 _ Write out the series given by 

	
 6

∑ n_______
2n + 1

  n = 1
	 ______________________________________________________
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