Find the roots, using the quadratic formula when necessary.

1.
$$X^2 + 6X + 2 = 0$$

2.
$$X^2 - 5X + 4 = 0$$

3.
$$3X^2 + 7X - 1 = 0$$

4.
$$A^2 - 10A = 11$$

5.
$$2Q^2 + 2 = 17Q$$

6.
$$5X^2 + 15X + 10 = 0$$

7.
$$1/4 R^2 - 1/2 R + 3/2 = 0$$

8.
$$16X^2 = 2X + 4$$

9.
$$2X^2 + 3X - 8 = 0$$

10.
$$Y^2 = 3/4 Y + 2$$

Find the roots, using the quadratic formula when necessary.

1.
$$8X^2 - X - 3 = 0$$

2.
$$7 = 2X^2 + X$$

3.
$$Q^2 - 6Q + 3 = 0$$

4.
$$2 + 3X + 4X^2 = 0$$

5.
$$P = P^2 - 2$$

6.
$$X^2 + 1/5 X + 5 = 0$$

7.
$$20X^2 + 40X = 30$$

8.
$$5A^2 + 2A - 1 = 0$$

9.
$$3X^2 = -5X$$

10.
$$AX^2 + BX + C = 0$$

12C

Find the roots, using the quadratic formula when necessary.

1.
$$X^{2} - 5X + 6 = 0$$

2. $X^{2} + 4X + 2 = 0$
3. $X^{2} - 3X + 1 = -6X$
4. $X^{2} + 4X - 12 = 0$

5.
$$2X^2 + 2X + 5 = 0$$

6. $X^2 + 8X = -16$

Complete the square.

7.
$$X^2 - 26X +$$
 8. $2X^2 + 9X +$

9.
$$X^2 + ___ + 400$$
 10. $X^2 - ___ + 14$

Solve for X. Complete the square when necessary.

11.
$$X^2 + 1/3 X - 4/3 = 0$$
12. Check the answers to #11 by placing them
in the original equation.

- 13. Expand $(X A)^{6}$.
- 14. What is the second term of $(1/2 \text{ X} 3\text{A})^4$?
- 15. Expand $(5 2A)^3$.
- 16. Find the cube root of $X^3 6X^2Y + 12XY^2 8Y^3$.

Put in standard form.

17.
$$\frac{6+5i}{3i-2}$$
 18. $\frac{2+\sqrt{-49}}{2-\sqrt{-49}}$

Simplify, and combine like terms when possible.

19.
$$\frac{2}{3-\sqrt{7}}$$
 20. $\frac{2+\sqrt{5}}{2\sqrt{5}-4}$

_

12D

Find the roots, using the quadratic formula when necessary.

1.
$$2X^{2} - 9X - 7 = 0$$

2. $X^{2} + 5X - 2 = 0$
3. $3X^{2} + 7X + 4 = 0$
4. $X^{2} - 6X + 12 = 0$

5.
$$5X^2 - 3X - 2 = 0$$

6. $4X^2 + 1 = 4X$

Complete the square.

7.
$$X^2 + 5X +$$
 8. $X^2 - 1/2 X +$

9.
$$25X^2 + __ + 1$$
 10. $49X^2 - __ + 4$

Solve for X. Complete the square when necessary.

11. $X^2 - 12X + 20 = 0$ 12. Check the answers to #11 by placing them in the original equation. 13. Expand $(X + 1)^4$.

14. What is the fifth term of $(1/2 \times -3A)^4$?

- 15. Expand $(10 1/X)^3$.
- 16. Find the cube root of $X^3 + 6X^2 + 12X + 8$.

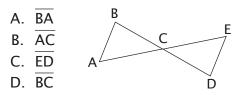
Put in standard form.

17.
$$\frac{4-3i}{2i}$$
 18. $\frac{10+\sqrt{-A}}{10-\sqrt{-A}}$

Simplify, and combine like terms when possible.

19.
$$\frac{9}{7+\sqrt{10}}$$
 20. $\frac{4-\sqrt{6}}{3\sqrt{7}+5}$

Circle your answer.


- Which of the following cannot be solved using the quadratic equation?
 - A. $X^2 64 = 0$ B. $X^3 + 3Y + 1 = 0$
 - C. $4A^2 + 8A = 16$
 - D. $Y^2 = 2Y + 4$
- 2. The part of the quadratic formula written under the radical is:
 - A. $B^{2} + 4AC$ B. $B^{2} - 4AC$ C. $-B^{2} \pm 4AC$ D. $A^{2} + 4BC$
- 3. All quadratic equations can be solved by:
 - A. factoring
 - B. both factoring and the quadratic formula
 - C. the quadratic formula
 - D. none of the above
- In order to find values of A, B, and C in the quadratic formula, an equation should be in the form:
 - A. $AX^{2} = BX + C$ B. $X^{2} + AX = B - C$ C. $AX^{2} + BX + C = 0$ D. $AX^{2} + BX = -C$

5. The solution to $7X^2 + 2X - 1 = 0$ can be written as:

A.
$$X = \frac{-2 \pm \sqrt{2^2 - (4)(7)(-1)}}{2(7)}$$

B. $X = \frac{2 \pm \sqrt{2^2 - (4)(7)(-1)}}{2(7)}$
C. $X = \frac{-2 \pm \sqrt{2^2 + (4)(7)(-1)}}{2(7)}$
D. $X = \frac{-2 \pm \sqrt{(-2)^2 - (4)(7)(-1)}}{2}$

- For #6-10, solve using the best method.
 - 6. $X^2 36 = 0$ A. X = 6, -6B. X = 4, 9C. X = 0, 6D. $X = \pm 9$
 - 7. $X^{2} + 3 = -3X$ A. $X = \frac{-3 \pm \sqrt{3}}{2}$ B. $X = \frac{-3 \pm i\sqrt{3}}{6}$ C. $X = \frac{3 \pm i\sqrt{3}}{2}$ D. $X = \frac{-3 \pm i\sqrt{3}}{2}$

- 8 $5X^2 = -2X + 1$ A. $X = \frac{-1 \pm \sqrt{5}}{5}$ B. $X = \frac{-1 \pm \sqrt{6}}{5}$ C. $X = \frac{1 \pm 2\sqrt{6}}{5}$ D. $X = \frac{1 \pm \sqrt{5}}{5}$ 9 $4x^2 + 20x = -25$ A. $X = \pm 5/2$ B. X = 4, 5C. X = 5/2D. X = -5/210. $4X^2 + 4X - 10 = 0$ A. $X = \frac{-1 \pm i\sqrt{11}}{2}$ B. X = i, -2iC. $X = \frac{-1 \pm \sqrt{11}}{2}$ D. $X = \frac{-1 \pm 3i}{2}$
- 11. $\triangle ABC$ is congruent to $\triangle EDC$. AB corresponds to:

- 12. A quadrilateral with only one pair of parallel sides is a:
 - A. rhombus
 - B. trapezoid
 - C. parallelogram
 - D. regular polygon
- Two sides of triangle A are congruent to the corresponding sides of triangle B. The angle formed by the corresponding sides is 25° in both triangles. What postulate may be used to prove triangles A and B congruent?
 - A. SSS
 - B. SSA
 - C. SAS
 - D. cannot be proved congruent
- 14. Each angle of triangle ABC is congruent to the corresponding angle of triangle DEF. What postulate may be used to prove ΔABC and ΔDEF congruent?
 - A. SSS
 - B. AAA
 - C. SAS
 - D. cannot be proved congruent
- 15. Five yards are a little less than:
 - A. 5 meters
 - B. 10 meters
 - C. 2 meters
 - D. 6 meters