

Cover design: David Keller

Opening page illustrations: David Keller

Text illustrations: Janet Moneymaker, Rebecca W. Keller. Ph.D.

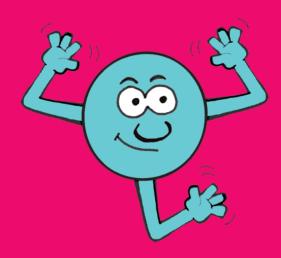
Copyright © 2005, 2007, 2010 Gravitas Publications, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. No part of this book may be reproduced in any manner whatsoever without written permission. This publication may be photocopied without permission from the publisher only if the copies are to be used for teaching purposes within a family.

Real Science-4-Kids: Chemistry Pre-Level I Textbook

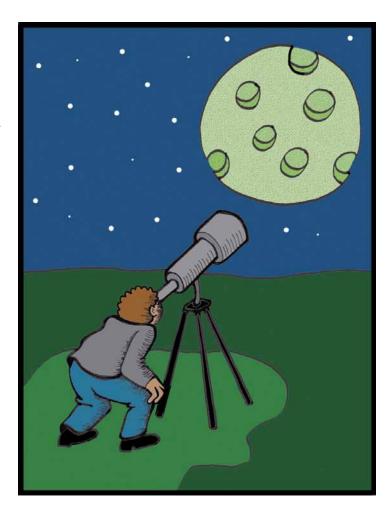
ISBN # 9780976509707

Published by Gravitas Publications, Inc. 4116 Jackie Road SE, Suite 101 Rio Rancho, NM 87124 http://www.gravitaspublications.com

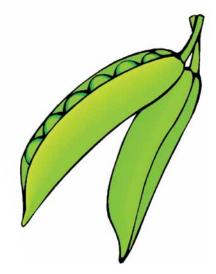


CHAPTER 1 ATOMS	1	
- · · · · · · · · · · · · · · · · · · ·		
1.1 Atoms	2	
1.2 Different atoms	5	
1.3 Atoms stick together	6	
1.4 Making observations	7	
1.5 Summary	8	
CHAPTER 2 MOLECULES	9	
2.1 Atoms are building blocks	10	
2.2 Atoms form molecules	10	
2.3 Atoms follow rules	14	
2.4 Summary	16	
CHAPTER 3 MOLECULES MEET	17	
3.1 When molecules meet	18	
3.2 Molecules switch atoms	19	
3.3 Molecules join together	20	
3.4 Molecules break apart	20	
3.5 Reactions are everywhere	22	
3.6 Reactions follow rules	24	
3.7 We can see reactions	25	
3.8 Summary	26	
	07	
CHAPTER 4 ACIDS AND BASES	27	
4.1 Special molecules	28	
4.2 Acids and bases are different	28	
4.3 H and OH groups	30	
4.4 Both are important	31	
4.5 Summary	33	
CHAPTER 5 ACIDS AND BASES REACT	34	
5.1 When acids and bases meet	35	
5.2 Acid-base reactions	36	
5.2 Acid-base reactions 5.3 Important acid-base reactions	39	
5.4 Observing acid-base reactions	40	
5.4 Observing acid-base reactions 5.5 Summary	40	
J.J Julillial y	41	

CHAPTER 6 MIXTURES	42
6.1 Mixing	43
6.2 Mixtures	44
6.3 Some mixtures dissolve	44
6.4 Dissolving	45
6.5 Soap	49
6.6 Summary	52
CHAPTER 7 UN-MIXING	53
7.1 Un-mixing	54
7.2 Evaporation	54
7.3 Sorting by hand	55
7.4 Using tools	56
7.5 Using "tricks"	57
7.6 Summary	59
CHAPTER 8 FOOD AND TASTE	60
8.1 Tasty molecules	61
8.2 The amazing tongue	63
8.3 Large tasty molecules	64
8.4 Summary	66
CHAPTER 9 MOLECULAR CHAINS	67
9.1 Chains of molecules	68
9.2 Different polymers	69
9.3 Polymers can change	71
9.4 Summary	73
CHAPTER 10 MOLECULES IN YOUR BODY	74
10.1 Special polymers	75
10.2 Proteins — tiny machines	76
10.3 DNA — a blueprint	77
10.4 Summary	79

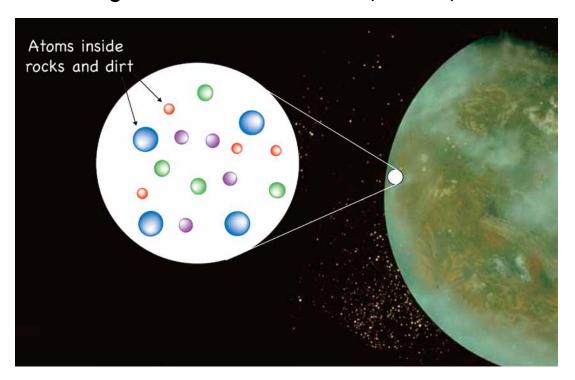

Chapter 1 Atoms

- 1.1 Atoms
- 1.2 Different atoms
- 1.3 Atoms stick together
- 1.4 Making observations
- 1.5 Summary

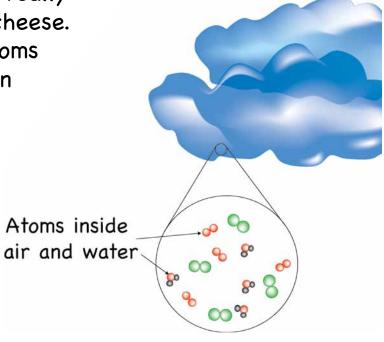

1.1 Atoms

Have you ever wondered if the moon is really made of green cheese?

Have you ever thought the clouds might be made of cotton candy?


or peas green?

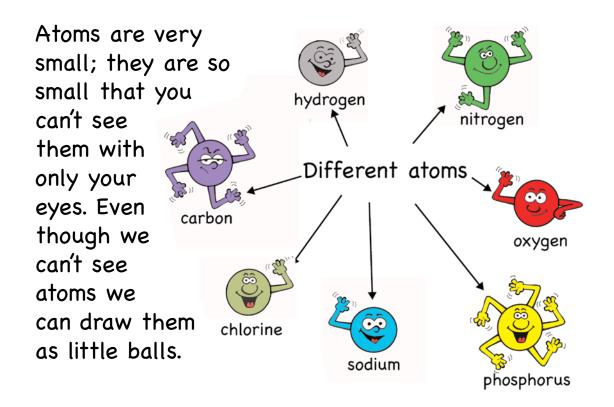
Have you ever wondered why brussels sprouts couldn't taste more like sweet cherries, or asparagus taste more like candy canes?


Everything around us has a different shape or flavor or color, because everything around us was designed with different atoms

put together in different ways. Atoms are very small things we can't see with only our eyes.

The moon is not really made of green cheese. It is made of atoms that are found in rocks and dirt.

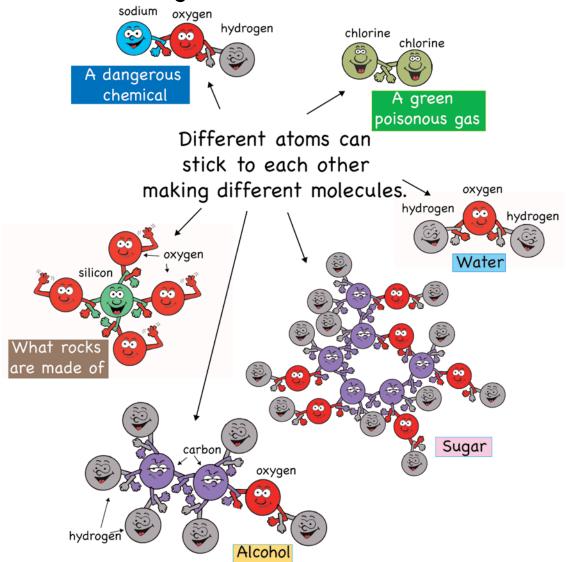
Clouds are
not made of
cotton candy, Atoms inside
but of atoms air and water
found in air
and water.



Carrots are orange because their atoms are arranged in a way that makes them orange. Peas are green because their atoms are arranged in a way that makes them green. Brussels sprouts and asparagus don't taste sweet like cherries or candy canes because the atoms inside brussels sprouts and asparagus are not arranged in a way that makes them sweet.

1.2 Different Atoms

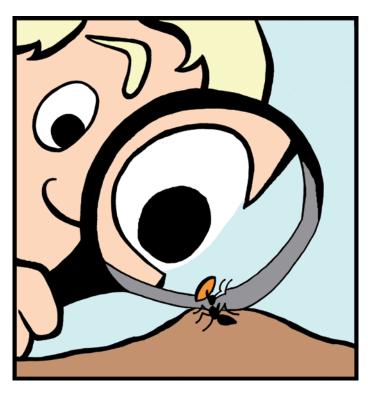
There are over 100 different atoms.


Carbon, oxygen, and nitrogen are the names of a few different atoms.

1.3 Atoms stick together

Atoms can be by themselves, or they can hook to other atoms to make molecules. We will learn more about molecules in Chapter 2.

Atoms can stick together in many different ways. The different ways that atoms stick to other atoms make things different from each other.



1.4 Making observations

How do we know everything is made of atoms if we can't see them with our eyes?

We know about atoms because of the way things look and the way things behave. To learn about atoms, scientists make very careful observations about the world around them.

But scientists aren't the only ones who make observations. Everyone does! Making observations just means looking at things and wondering about them. You make observations all the time.

For example,
when you see
an ant crawling
on the ground,
you are making
an observation.
You might ask
yourself, "What
color is the ant?"

"How many legs does it have?" "Does he crawl in a straight line, or does he wander?" All of these questions, and many others, can be answered by making careful observations. Observations are a very important part of science, because it takes careful observations to discover new things. You might think you know what something looks like, but when you observe it carefully, you might find something new!

1.5 Summary

- Everything is made of atoms.
- Atoms are very small things we can't see using only our eyes.
- Atoms can stick to other atoms to make things taste different, feel different, look different, or smell different.
- Making careful observations helps scientists and you make new discoveries about the world.