PRIMARY MATHEMATICS

From the original creators of the Math program that propelled a nation to world-class ranking

Components Core Components

As a core component of PRI@ARY חOATHENMATICS, the Student Book aims to equip students with strong conceptual understanding, critical thinking, and problem-solving skills. Mathematical concepts are developed in a clear and sequential way to facilitate understanding.

Student Books are also available as eBooks for students to access during home-based learning.

The Home Instructor's Guide is designed to accompany the Student Book. The guide provides home instructors with teaching ideas and arms them with a repertoire of strategies to facilitate exploration, discussions, and student-centric learning. Provided in the Home Instructor's Guide are ideas for differentiation at appropriate junctures in a lesson, including concept development.

Practices in Mastery and Beyond guide students to apply essential mathematical concepts in unfamiliar contexts. Together, the Student Book, Additional Practice, and Mastery and Beyond are designed to develop fluency and flexibility in math.

Resources For Differentiałed Instruction

Reteach exercises are written to help students who need additional support gain required conceptual understanding and skills. Each exercise directly correlates to a lesson in each section of a chapter.

Additional Practice supplements the Student Book and is targeted at providing students with on-level practice of concepts and skills learned in each chapter.

Extension exercises are written to develop creative problem-solving skills in students. Each exercise directly correlates to a lesson in each section of a chapter. The problems in each practice provide additional challenges and hone critical and creative thinking.

Assessment Opportuniłies

Assessment is an integral part of the teaching and learning process. The assessment opportunities in PRIMAARY MAATHENOATICS offer a complete picture of students' progress.

In the Student Book:

Recall at the start of each chapter assesses students' readiness for the chapter. It serves as a diagnostic assessment to measure students' prerequisite knowledge. Students will also self assess their readiness using the "I can" statements.

Performance Task is a

 formative assessment at the end of each chapter.It is set in a real-world context that provides opportunities for students to demonstrate their understanding and proficiency.

Practice On Your Own

at the end of each lesson is a formative assessment to inform teachers about the next steps for mastery.

While the assessments in the Student Book are formative in nature, assessments that are available in the corresponding Assessment Guide Teacher Edition are summative.

In the Assessment Guide Teacher Edition, Chapter Tests and Cumulative Assessments are provided to assess students' mastery of concepts and skills.

- Chapter Test is administered at the end of each chapter to assess students' mastery of the concepts and skills in the chapter.
- Cumulative Assessment occurs at the end of a few chapters to assess students' mastery of the concepts and skills across the chapters.

Chapter Pathway

The instructional pathway across a chapter provides an effective learning experience for all students. The different sections and features in each chapter help students to build conceptual understanding through a range of practice and fluency-building activities as well as frequent opportunities for discussions, timely differentiated instruction, and problemsolving opportunities.

SECTION 1A

CHAPTER 1

IN CLASS

HOMEWORK

Additional Support:
Additional Practice

On-Level Practice and Extension: Extension

Strong fundamentals based on proven Singapore Math ${ }^{\circledR}$ approach

PRIMOARY MATHENATILS is centered on the approach developed and used in Singapore since the early 1980s. An approach that is used in Singapore schools today.

What is the
 SINGAPORE MATH ${ }^{\circledR}$ APPROACH?

The Singapore Math ${ }^{\circledR}$ approach emphasizes developing conceptual understanding, mathematical skills and processes, metacognition, and right attitudes. At the heart of this approach is mathematical problem solving.

Understanding of the
properties and relationships,
operations and algorithms

Referred from Singapore Ministry of Education Math Curriculum

Enabling Problem Solving

This is done with a consistent problem-solving process and the use of heuristics. Students are encouraged to persevere to discover mathematical results for varied situations and contexts.

Key characteristics of the SINGAPORE MATH ${ }^{\circledR}$ APPROACH

CONCRETE-PICTORIALABSTRACT

VISUAL MODELS

PROBLEM SOLVING

MATHEMATICAL \& PERCEPTUAL VARIATIONS

LEARNING PROGRESSION

DIFFERENTIATION \& ASSESSMENT

Students engage with mathematical concepts by first handling physical objects, then representing mathematical ideas using diagrams, and finally using abstract representations. Through the use of concrete materials and visual representations, students are able to "see" and make sense of the math and the abstract representations.

Visual models such as number bonds, bar models, and fraction models are hallmarks of the Singapore Math ${ }^{\oplus}$ approach. These models help students visualize and understand abstract mathematical concepts.

Heuristics are introduced at each grade level to equip students with strategies to solve increasingly complex problems. Students apply these heuristics to solve real-world problems through a consistent problem-solving process.

Mathematical variation presents opportunities for students to experience the same mathematical concept through various applications. Perceptual variation showcases a mathematical concept using different representations. Variation deepens understanding as students apply mathematical concepts in different ways.

Math is learned incrementally, with one concept building on the next. More depth is added, linking new concepts to the learning that has already taken place. Learning math this way leads to deeper conceptual understanding.

Structured for effective instruction

PRIMIARY MATHEMATILS is based on the Readiness-Engagement-Mastery instructional design.

Phases of LEARNING

Readiness-Engagement-Mastery is the instructional model advocated for in the Singapore mathematics curriculum.

READINESS

In this phase, home instructors engage students, capturing their attention through interesting and relatable scenarios. Home instructors ascertain readiness to learn by helping students make connections to previously-learned concepts and skills.

ENGAGEMENT

Students learn by doing, and are challenged to construct new knowledge through engaging activities and guided inquiry.

MASTERY

Students gain fluency and confidence through leveled practice. They gain mastery through review and reflection in oral and written forms. They also tackle problems in unique and effective ways.

For the "Readiness" phase of learning, students engage in learning through:

- Student Book

- Chapter Opener
- Recall

CHAPTER OPENER stimulates

 curiosity and interest through a context that connects Math to real life, taps into prior knowledge, and encourages discussion.(c) one hundred four

RECALL assesses students' readiness for the chapter so that home instructors can allocate appropriate resources during lessons.

SUBTRACTION WITHIN 1,000

2. Write the missing numbers.
(a) $\begin{array}{r}70 \\ 2\end{array}$
 72
70 and 2 make \qquad .
(b) 64 is \qquad and 4.
(c) $+6=46$
\qquad
3. Write the numbers.
(a) twenty-eight
(b) thirty-five
tens \qquad ones $=$ \qquad Date:

Recall

I. Fill in the blanks.

ㅁㅁ
ㅁㅁ
$\square \square$ Tens Ones \square ones
1
${ }^{-1}$

For the "Engagement" phase of learning, students engage in learning through:

- Student Book

- Task
- Learn
- Learn Together
- Activity!

LEARN TOGETHER consists of a series of problems that are carefully varied and progress from the simplest concept in LEARN to more complex ones, developing and deepening students' understanding. LEARN TOGETHER is student-centric. The variation exposes students to the different ways a concept can be tested. This helps them to develop application of concepts in different perspectives

ACTIVITY! requires students to solve problems collaboratively and to demonstrate understanding by articulating their thinking.

Activity!

Pick an addition card
Find the answer.

Learn Together

I.

(a) In 297, the digit 2 is in the hundreds place.

Its value is
(b) In 297, the digit 9 is in the tens place.

Its value is
(c) In 297, the digit 7 is in the ones place.

Its value is
2.

3 hundreds 7 tens $=$
$300+70=$

[^0]For the "Mastery" phase of learning, students gain mastery through these resources:

- Student Book

- Practice On Your Own
- Think!
- Chapter Practice
- Performance Task
- STEAM Project Work
- Heuristics
- Reteach
- Additional Practice
- Extension
- Mastery and Beyond

PRACTICE ON YOUR OWN is an independent practice at the end of a lesson. It serves as a formative assessment, informing home instructors which differentiated resources they should use with their students..

THINK! challenges students to use different strategies to solve a novel problem.

Think!

3. MODEL AND REASON Show the numbers 402, 396, and 398 on the number line.
How would you use the number line to order the numbers? Explain your answer.

- one-dollar bill

2. How much money is there?
(a)

\$
\qquad

PERFORMANCE TASKS are formative assessment tasks, set in real-world contexts, with accompanying rubrics. The questions require application of concepts and skills learned or they may be open-ended but with limited possible answers.

I. The White House has 412 doors and 147 windows. How many more doors than windows are there?

STEAM PROJECT WORK is an interdisciplinary task that spans multiple chapters and shows the relevance and importance of mathematics. It promotes critical and creative thinking.

Chapter Practice

I. Carla is 7 years old.

Her brother is 15 years old.
Find the difference between their ages.
(A) 7
(B) 8
(C) 20
(D) 22
2. Justin has 25 crayons.

He buys another 45 crayons.
Which bar model shows the number of crayons he has now?
(A)

(B)

(C)

(D)

Name \qquad Date: Solve! Heuristics: Guess ond Check $^{\text {S }}$

There are 8 ducks and tortoises in a pond. They have 26 legs in all. How many tortoises are there in the pond?

Step I Understand

How many ducks and tortoises are there in the pond? How many legs does each duck or tortoise have? How many legs are there in all?

Step 2 Plan

I make a guess of the answer. Then I check if it is correct.

SOLVE! HEURISTICS is a dedicated section to teach problem-solving strategies that can be applied to different types of problems. Across the grades, students will be introduced to new strategies that will help them tackle complex problems.

Number of ducks	Number of tortoises	Number of duck legs	Number of tortoise legs	Number of legs in all	Check (V / X)
4	4	$2+2+2+2=8$	$4+4+4+4=16$	$8+16=24$	x
5	3	$2+2+2+2+2=10$	$4+4+4=12$	$10+12=22$	x
3	5	$2+2+2=6$	$4+4+4+4+4=20$	$6+20=26$	\checkmark

There are 5 tortoises in the pond

Step 4 Look Back

Check that the answer makes sense.
\qquad Date: \qquad

MASTERY AND BEYOND consolidates

 concepts and skills at a section level of a chapter to deepen and strengthen students' understanding.Exercise 1A Count to 1,000 (1)

Example 1

a) How many pencils are there?

$100,110,120,130$, $140,150,160,170$

There are \qquad 70 pencils.

RETEACH consists of worked examples and scaffolded, leveled questions for students who need more support in reaching mastery.

ADDITIONAL PRACTICE provides on-level practice at the end of each lesson. This component enables students to hone their skills and sharpen their grasp of concepts.

Exercise 3A Subtract Fluently Within 20 (1)
I. Take away to subtract.
(a) $19-3=$ \qquad

(b) $17-4=$ \qquad

(c) $14-3=$ \qquad

Additional Practice Grade 2A
3A Subtract Fluently Within 20 (1)

About this Home Instructor's Guide

Quality resources, ideas, and strategies make your planning seamless and your lessons coherent.

CHAPTER OVERVIEW provides embedded Professional Development by providing insights into the Key Ideas of the chapter. Materials needed for the whole chapter are listed to provide home instructors with an overview of things they need to prepare for the chapter.

CHAPTER AT A GLANCE

shows the learning outcomes, new vocabulary, materials, and instructional resources necessary to prepare for teaching.

1 NUMBERS TO 1,000

Chapter Overview

 - use base-ten sets to count to 1,000 .

- use place value to determine the value of each digit in a
number before finding I more, 1 less, 10 more,, 10 less, 100 mo or 100 less than a number. He/she moves on to compare and
order numbers using place value. order numbers sing polce evilue.

$489<491$
use number
numbers.

learn to identify bills and count to find the value of a set
bills before comparing and ordering the amounts.

$\mathrm{Keq}^{\mathbf{I}}$ Ideas
- We can represent numbers in various ways.
The number in standord form is 356 . The number in standard form is 356.
The number in expanded form is $300+50+6$ The number in word form is three hundred fifty-six.

We can identify the rule for a number pattern to find the

We can count to find the total a
bills to make the same amount.
bills to make the some amount.
10 ten-dollar bills can be exchanged for a $\$ 100$ bill.
10 one-dollar bills con be exchanged for a $\$ 10$ bill.
10 one-dollar bills can be exchanged for a $\$ 10$ bill.
Materials You Will Need

- Ibase-ten set
- I set of connecting
- I number cube
- Iset of paper money
- I set of place-value strips
- Place-Volue Chart 1 (TROI)
- Hundred Chort (TRO2)
- Place-Value Chart 2 (TR03)
- Number Cards (TRO4)
- Number Tape Template (T)
- More/Less Cords (TR06)

CHAPTER OPENER

supports home instructors with suggestions to engage students in mathematical conversations.

TEACHING TIP highlights common learning difficulties that students may encounter in the chapter and provides suggestions for home instructors to address those difficulties.

RECALL highlights the learning objectives of each question and provides questioning prompts for discussions.

MAKE IT A GAME! provides instructions for a game for home instructors to carry out with students to help them review prior knowledge of the chapter.

FOR ADDITIONAL SUPPORT

provides suggestions for students who might need extra help understanding concepts.

Lesson Debrief
Conclude the lesson and facilitate your student's reflection by osking him/her Extend the discussion by posind and share his $/$ her thinking

- How can you relate the subtraction of ones to the subtraction of tens? Both can be treated like digits being subtracted. The place value chang making the value of the digits change. How can you subtract tens from hundreds? I con write the hundreds as tens and then subtract.

Reflect and Connect

- Allow time for your student to reflect on what he/she has learned and
ask questions about what he/she may be unsure of.
Encourage him/her to share anything that was confusing or difficult process of learning.
- Ask yours tudennt to answer a reflection question or dr
show his/her reflection. You may offer these prompts:
show his her reflection. You may offer these prompts:
- How did you subtract tens today? What two methods did you
learn? How are they different 2 Which method works best for you?
What to look for:
an example of subtracting mentally using tens
or explanation of subtracting
- ar reflection of which strategy works best for your student

Practice On Your Own (Student Book, page 130)
QUESTION 1 assesses your student's ability to relate subtracting tens to
subtracting ones
subtracting ones.
QUESTION 2 asse
QUESTION 2 assesses your student's ability to subtract tens mentally by
choosing approppicte strin
choosing appropriate strategies.

This sequence of practice questions requires your student to subtract
mentally. If your student requires additional support, have himher ge mentally. If vour student requires additi
back to using a base-ten set to subtract.

DIGGING DEEPER

provides suggestions to challenge students and help them apply concepts in different situations.

Day lof 17
Chapter Opener
(Student Book, page I)
student Prompt him /her to qunsiditer the information Discuss them with your what is being asked. You may wish to ask the following questions:
What do you notice about each phone? The phones have different prices. Some phones have prices that have hundreds. Others only have tens and determine the cheapest phone? Compare the prices of the phones using place value. What strategies would you use? I would use a base-ten set and a place-value chart to see which has more. Why do you compare prices?

Teaching Tip
If your student is unsure about how to compare the prices of the phones, encourage h im/her to build each price using place-value materials.

Recall

Material(s)

- I set of connecting cubes
- I set of place-volue stri
- I copy of Place-Volue Chart | (TROI)
- I copy of Hundred Chart (TRO2)
studen medel and connecting cubes. Once you are convinced of his/her proficiency move of to asking your student to create similor numbers using place-volue strips and Place-Value Chart 1 (TROI).
Encourage your student to roll a number cube twice to form a 2-digit
number. Then have your student write the number in words. Next,
encourage $h i m / h$ her to find I more, Il less, 10 more, or 10 less than the
have your student choose two numbers to compare
How will you represent your number with a base-ten set? Make the
can show the and ones. How do you know how many ones to use?
when you add I more? It increases by I. How do you use place value to
sompare your numbers? Compe 5 the place with the g place vest value to

LEARN TOGETHER gives

 prompts and questions to lead students towards deeper understanding. Answers to problems in Learn Together are provided at point of use for easy reference.ACTIVITY! provides the intent of the collaborative task, the steps to carry out the task, and suggested prompts to facilitate discussions.

Learn Together (s

Provide your student with a base-ten set and invite him/her to find the sum of
the two numbers. Encourage your student the two numbers. Encourage your student to use a vertical algorithm to add an show the renaming in multiple place values.

Through questioning, lead your student to add two 3 -digit numbers with renaming in the tens ond ones in Learn Together. You may wish to osk the following questions:

What place value help y you to add? a base-ten set; vertical algorithm How does place value help you? By using the place volue, I con add the digits in
the correct places. Why might it be easier to odd in the ones place first? there is renaming, it may help to go to the place of least value.
After your student has explored the concepts in the Lesson opener, Learn, and Learn
way wish to ask these questions to encourage further
What questions do you have? How does the vertical algorithm look
different when renaming in more than one place?
Tnvite yours student to your student summarize his her learning in a math journol. Invite your student to write a letter to a friend, explocining the eprocess of odding
two 3 -digit numbers with renaming in the tens and ones. Encourage your stude two 3 -digitn umbers with renaming in the tens and ones. Encourage your studen io share strategies to help him/her remember how to rename.

- QUESTION I builds your student's understanding of adding two 0 -digit
numbers with renaming in tens and ones using the vertical olgorithm. numbers with renaming in tens and ones using the vertical olgorithm.

Activity!
Invite your student to spin SSinner 1 (TR14) to generate two numbers. Then
ask him/her to solve using o strategy. Encourage your student to use onother strategy to check the answer including using a base-ten set and the vertical algorithm. You may wish to ask the following questions:

- How does renaming help pou uhilis oddidgst numbers? The renaming will
help me to make sure that there is only digigit in each place. What strategies help me to make sure that there is only I digit in each place. What strategies
did you use to add? vertical olgorithm and base-ten set

Digging Deeper

Encourage your student to considder why it is more efficient to begin adding Encourage your student to consider why it is more efficient to begin adding how the addition would require more steps if he/she were to add in the tens place first.

- Why is it more efficient to start in the place of least value? Each
place can be renamed and then added If starting in the tens place place can be renamed and then added. If starting in the tens place
when the ones are added and renamed, another ten would need to be added to the tens place. This would require the tens place to be added twice.

LESSON DEBRIEF wraps up the lesson by posing focus questions for students to articulate their understanding through conversation or journalling and for home instructors to evaluate students' level of understanding.

The focus question serves as a reflection question for home instructors to assess and evaluate students' learning. It also provides the opportunity for students to reflect and demonstrate how well they have learned in the lesson. Strategies to promote reflective thinking and a learning mindset are also provided in Reflect and Connect.

Lesson Debrief

- Conclude the lesson and facilitote your student's reflection by asking him/her to answer the Focus Question ond share his /her thinking.
Extend the discussion by posing the following question. Extend the discussion by yosing the following question. How is adding two 3 -digit tumbers with renaming in tens and ones
different from that of two the addition of two 3 -digit numbers with renaming in tens and ones. the ones place and the tens place add up to 10 or more. But in the addition of two 3-digit numbers with renaming in ones, only the ones place adds up to
10 or more.

Reflect and Connect

- Allow time for your student to reflect on what he/she has learned and - ask questions about what he/she may be unsure of.
- Encourage $\mathrm{him} /$ her to share anything that was confusing or difficult, and how thinking about it differently and perseverance helped the process of learning
show his/her reflection. You may offer these prompts: - How did you rename numbers today? How did renaming help you add? What strategies did you use to add?

What to look for:
What to look for:

- an understanding of renaming in multiple places
- a strategy for adding numbers (vertical algorithm, base-ten set, making
a ten, counting on) a ten, counting on)

PRACTICE ON YOUR OWN

 provides the learning objective of each question as well as describes the variation between questions for mastery of the lesson.THINK! provides higher-order thinking questions and prompts to facilitate discussions.

DO MORE AT HOME

provides suggested activities that home instructors can carry out with students to help them reinforce the necessary concepts taught in the lesson.

Practice On Your Own

- QUESTION I assesses your student's ability to c numbers using the comparison symbols. - QUESTION 2 assesses your student's ability to order three 3 -digit numbers
from greatest to least.
- $\begin{aligned} & \text { from greatest to least. } \\ & \text { QuESTION } 3 \text { assesses }\end{aligned}$
number using the digits 5,3 , and 9 and explain hisher thinking. possible 3 -digit Think!
- QUESTION 4 assesses your student's ability to determine the greatest possible number and explain his/ her thinking.
Ohat strategies should you use to hove the
What strategies should you use to have the greatest possible number? I can think about which digits need to go in the greatest place to give the
greatest number. How can you check your work to make sure included all the required information? I can look at the final number and see ifi it follows all the listed requirements.

More Resources

- Refer to Do More at Home below and Reteach 2, Exercise IC if your student
- When your stud sent isport.

Exercise IC

- To provide y
- Xourcise 1 C.
Yalso
provide further support and development to sustain learning.

Do More at Home

Invite your student to consider comparing numbers in everyday life. Look for opportunities to find 3 -digit numbers throughout the day. Then ask
your student to compare the numbers. Some possible examples include: - Comparing the digits on the television channels

- Comparing the pages of books

CHAPTER WRAP UP provides ideas to encourage reflection, consolidation of learning, and reviewing of key ideas.

PERFORMANCE TASK

outlines the objectives of each question and provides prompts to facilitate students' self-awareness, monitoring, and learning.

Day 9 of 17

Chapter Wrap Up
Before your student works on Performance Task, help him/her recap the key learning objectives and develop a concept map to reflect the concepts
skills of the chapter. Use the following key terms to start constructing sklis of the chapter
the concept map.

- Sum and difference
- Comparison model
- Word problems

Escourage your stadent of self-reflection

Performance Task (student Book, poges 201 to 204)
Refer your student to the Performance Task to consolidate ond deepen his/her understanding of the chopter through tasks that require him/her to show, expl student to set his/her own goals.
QUESTION (a) requires
two-step word problem. What do you know about the problem? What do you need to find? What
bar model could you draw? Why? What methods wuld
bar model could you draw? Why? What methods would you use to check
your answers?
drawing a part-whole model to support his/her reasoning.

- What method did you use to find your answer? Explain your answer

What strategies did you use to help you? How do you know that your answer is correct?

QUESTION (c) requires your studen to make a list of items that can be bough with the correct amount of change.

- How would you carry out the task? What strategy could you use to help
you find your answer? What do you need to find firs t ow do you know your answer makes sense? Are there other possible answers?

Teaching Tip student should have a firm understanding of the meaning of parts it in a part-whole model

©2022 Masthall cavendisis Eduation Ple tiv

RUBRIC provides the scoring guide for each question in the Performance Task and relates the points scored to the criteria given.

Rubric
$\mathbf{I S u}^{\text {(Sudent Book. poge 2044) }}$
Use the scoring guide to help you give feedback on your student's work.
se the comments section to provide information about what was done well and
what could be improved. Write words of encouragement to let your student know what could be improved. Wr
what he/she has done well.

STEAM PROJECT WORK provides a reminder of the ongoing project and the stage students should be at.

CHAPTER PRACTICE links the learning objective(s) of each lesson to a question to help home instructors identify gaps in students' learning. It also indicates the difficulty level of the questions based on Depth of Knowledge.

CHAPTER TEST is a summative assessment to assess students' understanding of the chapter.

Day 19 of 24

3909

Project Work \qquad

- Your studentis given an opportunity to moke connection b between
engineering ond mothemotics in this project work.
- At here end of Chapter 3 y your student should be bole to complete Part 3 .
 decide how to ploy his her game. Helshe evillolso need to determine the cost of each gome ellay

Days $20-21$ of 24

Chapter Practice

```
- Hove your student work on Chapter Practice in the Student Book independently
. to help him/her consolidate ond extend understanding of the chapter.
- levelof the a sumstions below.
- Teaching grompts roe provided for Levels 2 and 3 questions.
-When your student is ready, hove him/her work on Additional Practice 2A,
```

Question	Level	Chapter 3 Learning Objective(s)	Section(s)	Day(s)
1	1	Subtract a 3-digit number from another 3-digit number with renaming in hundreds and tens.	3 D	15
2	1	Mentally subtract tens from a given number between 100 and 900 .	зв	6
3	1	Fluently subtract within 20 by taking away. Fluently subtract from a ten within 20 Fluently subtract within 20 by counting back. Fluently subtract within 20 by counting on.	3 A	2-5
4	1	Fluently subtract within 100 without renaming, using strategies based on place value. Fluently subtract within 100 with renaming, using strategies based on place value. Subtract a 3-digit number from another 3-digit number without renaming. Subtract a 2-digit number from a 3 -digit number with renaming in hundreds and tens. Subtract a 3 -digit number from another 3 -digit number with renaming in hundreds, tens, and ones.	3C, 3D	8-16
5	2	Fluently subtract from a ten within 20.	3 A	3
6	1	Add or subtract within 1.000 using the relation between addition and subtraction.	3 E	17
7	2	Fluently subtract within 100 without renaming, using strategies based on place value.	3 C	8
8	3	Subtract a 2-digit number from a 3 -digit number with renaming in hundreds and tens. Subtract a 3 -digit number from another 3 -digit number with renaming in hundreds, tens, and ones.	3 D	14.16

186 Chapter 3 Subtraction Within 1.000

- 2022 Mastsall Cavendish Eduaction Piet ud

CHAPTER SELF-REFLECTION provides students the opportunity to reflect on their learning.

Chapter Self-Reflection
Check $(\sqrt{\prime})$ to show what I can do.

ICan	$\begin{aligned} & 300 \\ & \text { Yes } \end{aligned}$		No
find the sum of two numbers by adding parts to make a whole.			
find the difference between two numbers by comparing or subtracting two numbers.			
solve one-step word problems involving addition by drawing part-whole models.			
solve one-step word problems involving subtraction by drawing part-whole models.			
solve one-step word problems involving situations of putting together or taking apart by drawing part-whole bar models.			
solve one-step word problems involving comparison by drawing comparison bar models.			
solve two-part word problems involving addition and subtraction by drawing bar models.			
use the three-step problem-solving model to solve two-part word problems involving addition and subtraction.			
solve two-step word problems involving addition and subtraction by drawing bar models.			
use the three-step problem-solving model to solve two-step word problems involving addition and subtraction.			

Developed by an expert panel

Bring the best practices of seasoned educators, developers of home instructors, and champions of Singapore Math ${ }^{\circledR}$ into your classroom!

Consultants

Dr. Kho Tek Hong, Ph.D.

played a key role in putting Singapore Mathematics on the world map and is responsible for shaping Singapore's mathematics curriculum development. As a Project Director for the Primary Mathematics Project at Ministry of Education (MOE), Singapore, Dr. Kho led a team of curriculum specialists to create high-quality teaching and learning materials, and to develop the Model Method in the 1980s. This method is a pictorial way to represent mathematical quantities, and has proven to be a very successful problem solving tool over the decades.

Dr. Kho was a Mathematics teacher before becoming a lead curriculum designer, and then a principal curriculum specialist in MOE until his retirement. He was also a consultant to the MOE Mathematics Unit, Curriculum Planning and Development Division, and oversaw the school mathematics syllabus formulations since the late 1970s and remained involved in an advisory role in recent syllabus revisions.

Dr. Lee Ngan Hoe, Ph.D.

is an Associate Professor in the Mathematics \& Mathematics Education Academic Group at the National Institute of Education, Nanyang Technological University, Singapore. He taught Mathematics and Physics in a secondary school before becoming a Gifted Education Specialist at the Ministry of Education, Singapore.

Dr. Lee is an active researcher and speaker at conference presentations. His key areas of focus are mathematics curriculum development, metacognition, and mathematical problem solving/modeling. His research includes international comparative studies, such as the Teacher Education Study in Mathematics (TEDS-M) and the International Comparative Research to Identify Unique and Promising Practices in Mathematics and Science Teacher Preparation for APEC Economies. He has also co-authored two primary mathematics packages, Shaping Maths and Maths Works, used in Singapore schools.

U.S. Consulfant

Susan F. Resnick, MA

began her career as an educator in 1988. Since then, she has gathered more than 30 years of experience as a K-I2 Special Education teacher, licensed math interventionist, public and private school teacher, principal, and District Math Coordinator. Susan also served as a curriculum consultant to Turnaround districts and is an Affiliate Professor of Special Education, Principal Licensure, and Teacher Leadership at a local university.

A seasoned champion of Singapore Math ${ }^{\circledR}$, Susan is working with students, teachers, coaches, and administrators to implement Singapore Math ${ }^{\circledR}$ strategies in the United States and other countries.

\section*{$300 k$ Aushor

Student Book Author

Dr. Koay Phong Lee, Ph.D.

was an Associate Professor of Mathematics Education at the National Institute of Education, Nanyang Technological University, Singapore, until her retirement. She was involved in training mathematics teachers in Malaysia, Brunei Darussalam, and Singapore. Her key areas of focus include learning difficulties in mathematics, mathematical investigations and problem-solving as well as the use of technology in teaching elementary and middle school mathematics.

Dr. Koay has co-authored journal articles and publications, with a focus on an exploratory study on Low Attainers in Primary Mathematics (LAPM). She also co-authored Shaping Maths, a primary school mathematics package which is widely used in Singapore schools.

\title{

Home Instructor's

Home Instructor's Guide Author

 Guide Author}

Jessica Kaminski, M.Ed.

was a teacher, academic coach, and consultant for over 15 years. She successfully put Singapore Math ${ }^{\ominus}$ to work in her classrooms. Convinced about its effectiveness, she went on to train teachers in over 55 districts across the United States, helping them to implement Singapore Math ${ }^{\circledR}$ strategies effectively in their classrooms.

Jessica now works as a consultant providing coaching, support and online courses for educators and Home instructors. Her passion is to provide customized professional development with a focus on differentiated instruction. Jessica has a Bachelor of Science in Elementary Education and a Master of Science in Special Education with an emphasis on Gifted Education.

[^0]: Chapter I Numbers to 1,000

