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Chapter 1

Mathematical Tools

The image above shows a small cylinder made of 90% platinum (element 78). This image is com-
puter-generated, but it is an accurate representation of the official one-kilogram mass known as 
the International Prototype of the Kilogram (IPK). The IPK is maintained in a vault in Sèvres, 
France by the International Bureau of Weights and Measures. The mass of the platinum cylinder 
in that vault is the official definition of the kilogram.

The kilogram is the only one of the seven base units in the metric system that is still defined 
by an artifact (a man-made physical object). The others are now defined in terms of various 
constants found in nature. Officials are looking to change the definition of the kilogram so that 
it, too, is defined in terms of physical constants instead of an artifact. In 2014, a decision was 
made to explore new methods for defining the kilogram and research on various methods is 
now underway.

The kilogram is also the only base unit in the metric system that includes a metric prefix in its 
name.
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	 Mathematical Tools

Objectives for Chapter 1

After studying this chapter and completing the exercises, you should be able to do each of the 
following tasks, using supporting terms and principles as necessary.
SECTION 1.1
1.	 Distinguish between matter and mass.

2.	 Use standard SI units and prefixes correctly and consistently.

3.	 Describe the origin of the SI System and state the seven SI base units.

4.	 Explain what a derived unit is and give examples.

5.	 Explain what MKS units are and why we use them when solving physics problems.
SECTION 1.2
6.	 Explain why all measurements contain uncertainty.

7.	 Distinguish between accuracy and precision.

8.	 Use significant digits properly when making measurements, interpreting measurements, and 
performing calculations.

9.	 Distinguish between random error and systematic error.

10.	Describe the meaning of the sample standard deviation.

11.	State the equation for the percent difference calculation used in evaluating experimental 
data.

SECTION 1.3
12.	Define fact, theory, hypothesis, and experiment.

13.	Describe the relationships between facts, theories, hypotheses, and experiments and the 
roles these play in the process of scientific inquiry.

SECTION 1.4
14.	Describe the difference between vector and scalar quantities, and give several examples of 

each.

15.	Use the properties of vectors to re-express vector quantities with negative directions or nega-
tive angles.

16.	Multiply vectors by scalars.

17.	Add vector quantities using graphical methods.

18.	Calculate rectangular vector components, calculate the magnitude and direction of a vector 
from its x- and y-components, and use trigonometric methods to calculate vector sums.

19.	Compute scalar (dot) and vector (cross) products.1 

20.	Use the right-hand rule to determine the direction of a vector product.

1	 This objective may be deferred until needed in Chapters 4 and 5.
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1.1	 Science and Measurements

1.1.1 No Measurements, No Science
One of the things that distinguishes scientific research from other fields of study is the cen-

tral role played in science by measurement. In every branch of science, researchers study the 
natural world, and they do it by making measurements. The measurements we make in science 
are the data we use to quantify the facts we have and to test new hypotheses. These data—our 
measurements—answer questions such as What is its volume? How fast is it moving? What is 
its mass? How much time did it take? What is its diameter? What was its frequency and wave-
length? When do we expect it to occur again? and many others. Without measurements, mod-
ern science would not exist.

Units of measure are crucial in science. Since science is so deeply involved in making mea-
surements, you will be working with measurements a lot in this course. The value of a mea-
surement is always accompanied by the units of measure—a measurement without its units of 
measure is a meaningless number. For this reason, your answers to computations in scientific 
calculations must always show appropriate units.

Before moving on to review units of measure, we will review the concepts of matter, volume, 
and mass.

1.1.2 Matter, Volume, and Mass
The best way to understand mass is to begin with matter and its properties. The term mat-

ter refers to anything composed of atoms or parts of atoms. Your thoughts, your soul, and your 
favorite song are not matter. You can write down your thoughts in ink, which is matter, and your 
song can be recorded onto a CD, which consists of matter. But ideas and souls are not material 
and are not made of what we call matter. Another part of this world that is not matter is electro-
magnetic radiation—light, radio waves, x-rays, and all other forms of electromagnetic radiation. 
Light is a form of energy; it is not matter and it has no mass.

All forms of matter may be described in terms of their physical and chemical properties. 
Here we will focus on just two: all matter takes up space, and all matter has inertia. Describing 
and comparing these two properties will help make clear what we mean by the term mass.

All matter takes up space. Even individual atoms and protons inside of atoms take up space. 
We quantify the amount space occupied by an object by specifying its volume. To say that the 
volume of an object is 1,350 cm3 (the volume of a typical adult human brain) is to say that to fill 
a hollow shell this size would require 1,350 neatly stacked cubes, each with a volume of 1 cm3, 
illustrated in Figure 1.1.  

All matter possesses the property of inertia. The ef-
fect of this property is that objects resist being acceler-
ated. The more inertia an object has, the more difficult 
it is to accelerate the object. For example, if the inertia 
of an object is small, as with a golf ball, the object will 
be easy to accelerate. Golf balls are easy to throw, and 
if you hit one with a golf club it will accelerate at a high 
rate to a very high speed. But if the amount of inertia 
an object has is large, as with say, a grand piano, the 
object will be difficult to accelerate. Just try throwing 
a grand piano or hitting one with a golf club and you 
will see that it doesn’t accelerate at all. This is because 
the piano has a great deal more inertia than a golf ball.Figure 1.1 Volumes of 1 cm3 (left) and 100 cm3 

(right).
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As with the property of taking up space, we need a way to quantify the inertia of an object. 
The way we do this is with the variable we call mass. The mass of an object is a numerical mea-
surement specifying the amount of inertia the object has. Since inertia is a property of matter, 
and since all matter is composed of atoms, it should be pretty obvious that the more atoms there 
are packed into an object, the more mass it will have. And since the different types of atoms 
themselves have different masses, an object composed of more massive atoms will have more 
mass than an object composed of an equal number of less massive atoms.

The basic unit of measure we use to specify an object’s mass is the kilogram. There are other 
units such as the gram and the microgram. The kilogram (kg) is one of the base units in the SI 
unit system, our topic in the next section.

We have established that the mass of an object is a measure of its inertia, which in turn de-
pends on how many atoms it is composed of and how massive those atoms are. The implication 
of this is that an object’s mass does not depend on where it is. A golf ball on the earth has the 
same mass as a golf ball at the bottom of the ocean, on the moon, or in outer space. Even where 
there is no gravity, the mass of the golf ball will be the same. This is what distinguishes the mass 
of an object from its weight.

 Weight is caused by the force of gravity acting on an object composed of matter (which we 
often simply refer to as a mass). The weight of an object depends on where it is. An object—or 
mass—on the moon only weighs about 1/6 of its weight on earth, and in outer space, where there 
is no gravity, a mass has no weight at all. But the inertia of an object—and thus its mass—does 
not depend on where it is. This is because an object’s mass is based on the matter the object is 
made of. A Steinway concert grand piano weighs 990 pounds on earth. In outer space, it weighs 
nothing and will float right in front of you. On the moon it weighs only 165 pounds—about as 
much as a slim man. But even in deep space, if you try to heave the grand piano—that is, try to 
accelerate it—the force you feel on your hands will be the same as it would be on the earth or 
on the moon. This is because the force you feel when you accelerate an object depends on the 
object’s mass.

To summarize in different terms, inertia is a quality of all matter; mass is the quantity of a 
specific portion of matter. Inertia is a quality or property all matter possesses. Mass is a quantita-
tive variable, and it specifies a quantity of matter.

1.1.3 The SI Unit System
The U.S. Customary System (USCS) is a system of units familiar to everyone raised in the 

United States. As familiar as this system is with its feet, pounds, and degrees Fahrenheit, this 
system is not used for scientific work. Thus without further ado, we will move on to the SI unit 
system.

The measurement system universally used for scientific work is the International System 
of Units, known as the SI system or the metric 
system. This system was published in 1960 but 
originated in France during the French Revolu-
tion. The original system included only the me-
ter and the kilogram. Over the years, as measure-
ment treaties were signed and scientific learning 
advanced, the system grew into the formal SI 
System that has now been in use since 1960. The 
SI System is administered by an organization in 
Sèvres, France (near Paris) known as the Inter-
national Bureau of Weights and Measures. The SI 
System has been adopted almost globally. There 

Unit Symbol Quantity
meter m length

kilogram kg mass
second s time
ampere A electric current
kelvin K temperature

candela Cd luminous intensity
mole mol amount of substance

Table 1.1. The seven base units in the SI unit system.
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are only three nations in the world that have not 
accepted the SI System as their official system of 
measurement: Myanmar, Liberia, and the United 
States. But even though our road sign markers 
still give distances in miles, in scientific work the 
SI System is the one we use.

There are seven base units in the SI System, 
listed in Table 1.1. All other SI units of measure, 
such as the joule (J) for measuring quantities 
of energy and the newton (N) for measuring 

amounts of force, are based on these seven base units. Units based on combinations of the seven 
base units are called derived units. A few common derived units are listed in Table 1.2.

To accommodate measurements of vastly differing size, the SI System uses multipliers on the 
units to multiply them for large quantities, or to scale them down for smaller quantities. These 
multipliers are the metric prefixes. The complete list of the 20 official SI prefixes is in Table 1.3. 
You do not need to memorize all of these; some are rarely used. But you do need to memorize 

some of them. I recommend that all high school science students commit to memory the pre-
fixes listed in Table 1.4.

I will conclude this section with a few brief notes. First, when using the prefixes for quanti-
ties of mass, prefixes are never added to the kilogram. Prefixes are only added to the gram, even 
though the kilogram—not the gram—is the base unit in the SI system. Second, note that when 
writing the symbols for metric prefixes, the case of the letter matters: kilo– always takes a low-

er-case k, mega– always 
takes an upper-case M, 
and so on. Third, one 
of the prefix symbols 
is not an English letter. 
The prefix μ for micro– 
is the lower-case Greek 
letter mu, the m in the 
Greek alphabet. Finally, 
pay close attention to the 
difference between mul-
tiple prefixes and frac-
tion prefixes. Learning 

to use the fraction prefixes properly is the most challenging part of mastering the SI System of 
units, and using them incorrectly in unit conversion factors is a common student error.

Unit Symbol Quantity
joule J energy

newton N force
cubic meter m3 volume

watt W power
pascal Pa pressure

Table 1.2. Some SI System derived units.

Multiples
Prefix deca– hecto– kilo– mega– giga– tera– peta– exa– zetta– yotta–

Symbol da h k M G T P E Z Y
Factor 10 102 103 106 109 1012 1015 1018 1021 1024

Fractions
Prefix deci– centi– milli– micro– nano– pico– femto– atto– zetto– yocto–

Symbol d c m μ n p f a z y
Factor 1/10 1/102 1/103 1/106 1/109 1/1012 1/1015 1/1018 1/1021 1/1024

Table 1.3. The SI System prefixes.

Table 1.4. SI System prefixes to commit to memory.

Fractions Multiples
Prefix Symbol Factor Prefix Symbol Factor
centi– c 1/102 kilo– k 103

milli– m 1/103 mega– M 106

micro– μ 1/106 giga– G 109

nano– n 1/109 tera– T 1012

pico– p 1/1012



7

	 Mathematical Tools

1.1.4 MKS Units
The study of physics is notorious for involving challenging problems. When you are dealing 

with complex problems involving lots of math, the last thing you want to do is fight your way 
through a host of unit prefixes and unit conversions to get all the units of measure to work out 
and agree. For this reason, when solving problems in physics we usually use a subset of the SI 
system units called MKS system. Using the MKS system means using only the SI base units such 
as the meter, the kilogram, and the second (hence, “MKS”) and the units derived directly from 
the base units.

The wonderful thing about solving problems in MKS units is that any calculation performed 
with MKS units will give a result in MKS units. This is why the MKS system is so handy and 
why we will use it almost exclusively. There are a few computations that are so simple that con-
versions to MKS units are not necessary, and I will point these out as we go. But for most of 
the problems you encounter in this text, you should always begin your problem solutions by 
converting all given quantities into MKS units. You will find many common conversion factors 
inside the back cover of the text and in Appendix A.

1.2	 Uncertainty in Measurements

1.2.1 Error and Uncertainty
All measurements contain error because there is no such thing as an exact measurement or a 

perfect measurement instrument. Any measurement, if made with a precise enough instrument, 
will exhibit variation. For this reason, good experimental practice consists of performing mea-
surements repeatedly so that the value under study consists not only of a single measurement 
but of an entire set of data. Scientists then communicate a measurement by specifying (usually) 
the mean value and a quantitative description of the uncertainty in the measurement. There are 
several ways to specify measurement uncertainty. The values in Table 1.5 are equivalent ways 
of expressing the mass of a proton, in units of 10–27 kilograms, as it is known today. Note the 
space inserted after every third decimal place. This is common in 
values with more than six decimal places and makes them easier 
to read.

In the second of the values in the table (perhaps the most 
common way of specifying uncertainty), the value in parenthe-
ses (74) specifies the uncertainty in the last digit (the 7 in the 
billionths place). In the third value, the same degree of uncer-
tainty is expressed in “parts per million.” To see this, note that 
one millionth of 1.672 621 777 is 0.000 001 673. Multiplying this 
by 0.044 gives us 0.044 of these millionths, which is 0.000 000 074. In other words, 0.000 000 074 
is 0.044 millionths of 1.672 621 777.

Finally, note that these four expressions of uncertainty are not equivalent to saying 
that the true value of the proton mass is somewhere between 1.672621851 × 10–27 kg and 
1.672621703 × 10–27 kg. They are statistical specifications relating to the amount of variation 
that occurs when scientists attempt to measure the proton mass. We will address this further in 
Section 1.2.5 below.

1.2.2 Distinguishing Between Accuracy and Precision
The terms accuracy and precision refer to the practical limitations inherent in making mea-

surements. Science is all about investigating nature, and to do that we must make measurements.

1.672 621 777 ± 0.000 000 074
1.672 621 777(74)

1.672 621 777 ± 0.044 ppm

Table 1.5. Three equivalent ways of 
expressing the same uncertainty.
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Accuracy relates to error—that is, to the lack of it—which is the difference between a mea-
sured value and the true value. The lower the error is in a measurement, the better the accuracy. 
Error can arise from many different sources including human mistakes, malfunctioning equip-
ment, incorrectly calibrated instruments, vibrations, changes in temperature or humidity, or un-
known causes that are influencing a measurement without the knowledge of the experimenter. 

Precision refers to the resolution or degree of “fine-ness” in a measurement. The limit to the 
precision that can be obtained in a measurement is ultimately dependent on the instrument 
being used to make the measurement. If you want greater precision, you must use a more pre-
cise instrument. The degree of precision in every measurement is signified by the measurement 
value itself because the precision is a built-in part of the measurement. The precision of a mea-
surement is indicated by the number of significant digits (or significant figures) included in the 
measurement value when the measurement is written down (see below).

Here is an example that illustrates the idea of precision and also helps to distinguish between 
precision and accuracy. Figure 1.2 is a photograph of a machinist’s rule and an architect’s scale 
placed one above the other. Since the marks on the two scales line up consistently, these two 
scales are equally accurate. But the machinist’s rule (on top) is more precise. The architect’s scale 

is marked in 1/16-inch increments, 
but the machinist’s rule is marked 
in 1/64-inch increments. Thus, the 
machinist’s rule is more precise.

It is important that you are able 
to distinguish between accuracy 
and precision. Here is another ex-
ample to help illustrate the differ-
ence. Let’s say Theodore and Mar-
ius each buy digital thermometers 
for their homes. The thermometer 
Theodore buys costs $10 and mea-
sures to the nearest 1°F. Marius 
pays $40 and gets one that reads to 

the nearest 0.1°F. Theodore reads the directions and properly installs the sensor for his new ther-
mometer in the shade. Marius doesn’t read the directions and mounts his sensor in the direct 
sunlight, which causes a significant error in the thermometer reading when the sun is shining on 
it; thus Marius’ measurements are not very accurate. The result will be that Theodore has lower-
precision, higher-accuracy measurements!

1.2.3 Significant Digits
The precision in any measurement is indicated by the number of significant digits it contains. 

Thus, the number of digits we write in any measurement we deal with in science is very impor-
tant. The number of digits is meaningful because it shows the precision that was present in the 
instrument used to make the measurement.

Let’s say you are working a computational exercise in a science book. The problem tells you 
that a person is going to drive a distance of 110 miles at an average speed of 55 miles per hour 
and wants you to calculate how long the trip will take. The correct answer to this problem will be 
different from the correct answer to a similar problem with given values of 110.0 miles and 55.0 
miles per hour. And if the given values were 110.0 miles and 55.00 miles per hour, the correct 
answer would be different yet again. Mathematically, of course, all three answers are going to be 
the same. If you drive 110 miles at 55 miles per hour, the trip will take two hours. But scientifi-
cally, the correct answers to these three problems are different: 2.0 hours, 2.00 hours, and 2.000 

Figure 1.2. The accuracy of these two scales is the same, but the 
machinist’s rule (above) is more precise than the architect’s scale 
(below).
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hours, respectively. The difference between these cases is in the precision indicated by the given 
data, which are measurements. (Even though this is just a made-up problem in a book and not 
an actual measurement someone made in an experiment, the given data are still measurements. 
There is no way to talk about distances or speeds without talking about measurements, even if 
the measurements are only imaginary or hypothetical.)

So when you perform a calculation with physical quantities (measurements), you can’t sim-
ply write down all the digits shown by your calculator. The precision inherent in the measure-
ments used in a computation governs the precision in any result you might calculate from those 
measurements. And since the precision in a measurement is indicated by the number of signifi-
cant digits, data and calculations must be written with the correct numbers of significant digits. 
To do this, you need to know how to count significant digits, and you must use the correct num-
ber of significant digits in all of your calculations and experimental data.

Correctly counting significant digits involves four different cases:

1.	 Rules for determining how many significant digits there are in a given measurement.

2.	 Rules for writing down the correct number of significant digits in a measurement you are 
making and recording.

3.	 Rules for computations you perform with measurements—multiplication and division.

4.	 Rules for computations you perform with measurements—addition and subtraction.

We will address each of these cases, in order.

Case 1   We begin with the rule for determining how many significant digits there are in a 
given measurement value. The rule is as follows:

•	•	 The number of significant digits in a number is found by counting all the digits from left to 
right, beginning with the first nonzero digit on the left. When no decimal is present, trailing 
zeros are not considered significant.

As examples of this rule, consider the following:

15,679	 This value has five significant digits.

21.0005	 This value has six significant digits.

37,000	 This value has only two significant digits because when there is no decimal, trailing 
zeros are not significant. Notice that the word significant here is a reference to the 
precision of the measurement, which in this case is rounded to the nearest thousand. 
The zeros in this value are certainly important, but they are not significant in the 
context of precision.

0.0105	 This value has three significant digits because we start counting digits with the first 
nonzero digit on the left.

0.001350	 This value has four significant digits. Trailing zeros count when there is a decimal.

The significant digit rules enable us to tell the difference between two measurements such as 
13.05 m and 13.0500 m. Again, these values are obviously equivalent mathematically. But they 
are different in what they tell us about the process of how the measurements were made—and 
science deals in measurements. The first measurement has four significant digits. The second 
measurement is more precise. It has six significant digits, and was made with a more precise 
instrument.
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Now, just in case you are bothered by the zeros at the end of 37,000 that are not significant, 
here is one more way to think about significant digits that may help. The precision in a measure-
ment depends on the instrument used to make the measurement. If we express the measure-
ment in different units, this cannot change the precision of the value. A measurement of 37,000 
grams is equivalent to 37 kilograms. Whether we express this value in grams or kilograms, it still 
has two significant digits.

Case 2   The second case addresses the rules that apply when you are recording a measure-
ment yourself, rather than reading a measurement someone else has made. When you take mea-
surements yourself, as you do in laboratory experiments, you need to know the rules for which 
digits are significant in the reading you are taking on the measurement instrument. The rule for 
taking measurements depends on whether the instrument you are using is a digital instrument 
or an analog instrument. Here are the rules for these two possibilities:

•	•	 Rule 1 for digital instruments	 For the digital instruments commonly found in high school 
or undergraduate science labs, assume all of the digits in 
the reading are significant except leading zeros.

•	•	 Rule 2 for analog instruments	 The significant digits in a measurement include all of the 
digits known with certainty, plus one digit at the end that 
must be estimated between the finest marks on the scale of 
your instrument.

The first of these rules is illustrated in Figure 1.3. The reading on the left has leading zeros, 
which do not count as significant. 
Thus, the first reading has three 
significant digits. The second 
reading also has three significant 
digits. The third reading has five 
significant digits.

The fourth reading also has 
five significant digits because with a digital display, the only 
zeros that don’t count are the leading zeros. Trailing zeros 
are significant with a digital instrument. However, when you 
write this measurement down, you must write it in a way that 
shows those zeros to be significant. The way to do this is by 
using scientific notation. Thus, the right-hand value in Figure 
1.3 must be written as 4.2000 × 104.

Dealing with digital instruments is actually more involved 
than the simple rule above implies, but the issues involved 
go beyond what we typically deal with in introductory or in-
termediate science classes. So, simply take your readings and 
assume that all the digits in the reading except leading zeros 
are significant.

Now let’s look at some examples illustrating the rule for 
analog instruments. Figure 1.4 shows a machinist’s rule being 
used to measure the length in millimeters (mm) of a brass 
block. We know the first two digits of the length with certain-
ty; the block is clearly between 31 mm and 32 mm long. We 
have to estimate the third significant digit. The scale on the 
rule is marked in increments of 0.5 mm. Comparing the edge 

Figure 1.4. Reading the significant 
digits with a machinist’s rule.

Figure 1.3. With digital instruments, all digits are significant except 
leading zeros. Thus, the numbers of significant digits in these 
readings are, from left to right, three, three, five, and five.

0042.0 42.00042.0 42,000
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of the block with these marks, I would estimate the next digit 
to be a 6, giving a measurement of 31.6 mm. Others might es-
timate the last digit to be 5 or 7; these small differences in the 
last digit are unavoidable because the last digit is estimated. 
Whatever you estimate the last digit to be, two digits of this 
measurement are known with certainty, the third digit is esti-
mated, and the measurement has three significant digits.

The photograph in Figure 1.5 shows a liquid volume mea-
surement in milliliters (mL) being made with a buret. The 
scale is marked in increments of 0.1 mL. This means we are 
to estimate to the nearest 0.01 mL. To one person, it may look 
like the bottom of the meniscus (the black curve) is just below 
2.2 mL, so that person would call this measurement 2.21 mL. 
To someone else, it may seem that the bottom of the menis-
cus is right on 2.2, in which case that person would call the 
reading 2.20 mL. Either way, the reading has three significant 
digits and the last digit is estimated to be either 1 or 0.

As a third example, Figure 1.6 shows a liquid volume mea-
surement being made in a graduated cylinder. The scale on 
the graduated cylinder is marked in increments of 1 mL. In 
the photo, the entire meniscus appears silvery in color with a 
black curve at the bottom. For the liquid shown in the figure, 
we know the first two digits of the volume measurement with 
certainty, because the reading at the bottom of the meniscus 
is clearly between 82 mL and 83 mL. We have to estimate the 
third digit, and I would estimate the black line to be at 40% of 
the distance between 82 and 83, giving a reading of 82.4 mL.

It is important for you to keep the significant digits rules 
in mind when you are taking measurements and entering 
data for your lab reports. The data in your lab journal and the 
values you use in your calculations and report should correct-
ly reflect the use of the significant digits rules as they apply to 
the actual instruments you use to take your measurements.

Case 3   The third and fourth cases of rules for significant 
digits apply to the calculations you perform with measure-
ments. In Case 3 we will deal with multiplication and divi-
sion. The main idea behind the rule for multiplying and di-
viding is that the precision you report in your result cannot be higher than the precision that was 
in the measurements to start with. The precision in a measurement depends on the instrument 
used to make the measurement, nothing else. Multiplying and dividing things cannot improve 
that precision, and thus your results can be no more precise than the measurements that went 
into the calculations. In fact, your result can be no more precise than the least precise value used 
in the calculation. The least precise value is, so to speak, the “weak link” in the chain, and a chain 
is no stronger than its weakest link.

Here are the two rules for using significant digits in calculations involving multiplication 
and division:

•	•	 Rule 1	 When multiplying or dividing, count the significant digits in each of the values you 
will use in a calculation, including any conversion factors you are using. (However, 

Figure 1.5. Reading the significant 
digits on a buret.

Figure 1.6. Reading the significant 
digits on a graduated cylinder.
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note: conversion factors that are exact are not considered.) Determine how many 
significant digits there are in the least precise of all of these values. The result of 
your calculation must have this same number of significant digits.

•	•	 Rule 2	 When performing a multi-step calculation, keep at least one extra digit during 
intermediate calculations, and round to the final number of significant digits you 
need at the very end. This practice will assure that small round-off errors don’t ac-
cumulate during a multi-step calculation. This extra digit rule also applies to unit 
conversions performed as part of the computation.

Case 4   The fourth case of rules for significant digits also applies to the calculations you per-
form with measurements. In Case 4 we will deal with addition and subtraction.

The rule for addition and subtraction is completely different than the rule for multiplication 
and division. When performing addition, it is not the number of significant digits that governs 
the precision of the result. Instead, it is the place value of the last digit that is farthest to the left in 
the numbers being added that governs the precision of the result. This rule is quite wordy and is 
best illustrated by an example. Consider the following addition problem:

	 13.65
	 1.9017
	 + 1,387.069
	 1,402.62

Of the three values being added, 13.65 has digits out to the hundredths place, 1.9017 has digits 
out to the ten thousandths place, and 1,387.069 has digits out to the thousandths place. Looking 
at the final digits of these three, you can see that the final digit farthest to the left is the 5 in 13.65, 
which is in the hundredths place. This is the digit that governs the final digit of the result. There 
can be no digits to the right of the hundredths place in the result. The justification for this rule 
is that one of our measurements is precise only to the nearest hundredth, even though the other 
two are precise to the nearest thousandth or ten thousandth. We are going to add these values 
together, and one of them is precise only to the nearest hundredth. Thus, it makes no sense to 
have a result that is precise to a place more precise than that, so hundredths are the limit of the 
precision in the result.

Correctly performing addition problems in science (where nearly everything is a measure-
ment) requires that you determine the place value governing the precision of your result, per-
form the addition, and then round the result. In the above example, the sum is 1,402.6207. 
Rounding this value to the hundredths place gives 1,402.62.

1.2.4 Random and Systematic Error
The two main types of error in experimental measurements are random error and systematic 

error. Random errors are caused by unknown and unpredictable fluctuations in the experimen-
tal setup. Examples of random error would be changes in the apparatus due to temperature fluc-
tuations in the room, vibrations or wind that influence the measurement in a random fashion, 
or electronic noise that influences the readings in your instruments. When you calculate and 
discuss the uncertainty in your measurements, you are discussing the random error that caused 
your measurements to fluctuate randomly around the mean value.

Systematic errors are errors that bias the experimental results in one direction, and are usu-
ally caused by equipment defects, miscalibration of measurement instruments, or an experi-
menter who consistently misreads or misuses the instruments in the same way. Usually, when 
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discussing systematic error, we are talking about problems that could be eliminated by proper 
use, calibration, and operation of the equipment. 

Your percent difference values (Section 1.2.6) can be influenced by factors you did not take 
into account in your predictions, and the result can be percent difference values that look like 
they include systematic error. A common example of this is physics experiments involving mo-
tion that do not take friction into account. If you make predictions in a mechanical system 
without taking friction into account, your results will all be biased in the same way relative to 
your measurements. This is not an “experimental error”; it is the result of using approximations 
in your theoretical modeling of the experiment. However, it is a contributor to your percent dif-
ference values and could play a role in the discussion of your results.

1.2.5 Standard Deviation
No doubt, you are already familiar with the statistical parameters mean and median. In the 

language of statistics, these parameters are measures of center—they indicate where the “middle” 
of a data set is. The standard deviation of a data set is another statistical parameter, one that in-
dicates the amount of “spread” in a data set. There are two different calculations for the standard 
deviation: the population standard deviation 
(σ) and the sample standard deviation (s). The 
population standard deviation applies to data 
sets that include every member of a popula-
tion; the sample standard deviation applies to 
data sets that contain a sample of values from a 
population, but not the entire population. For 
example, it is possible to know the age of every 
single student in a school, and such a data set 
constitutes a population. But since a data set of 
scientific measurements almost never contains 
every possible measurement value that could 
occur, sets of measurement data are usually 
samples and the sample standard deviation is 
the one most commonly used with scientific 
data.

When taking measurements or performing 
calculations from repeated trials of an experi-
ment, the values of the measurements—if there are enough of them—often form a Gaussian 
distribution (also called a normal distribution). Figure 1.7 illustrates how measurements form 
a  Gaussian distribution. Each circle in the figure 
represents a measurement. Most of the measure-
ment values are close to the mean value, so the 
distribution peaks here; some measurements lie 
far above or below the mean, giving the distribu-
tion its “tails.”

Figure 1.8 shows two more typical Gauss-
ian distributions, the second distribution more 
spread out than the first. The standard deviation, 
s, of a data set is a measure of how spread out the 
data are. Larger values of s mean wider spread; 
smaller values of s mean a narrower spread. The 
more accurate your experimental methods, and Figure 1.8. Gaussian distributions: narrow, with 

smaller s (top), and wide, with larger s (bottom).
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Figure 1.9. Relationship between the standard deviation and the area 
under the curve for a Gaussian distribution.

the more precise your instruments, the narrower the spread in the data should be (all else being 
equal). Data that are very close together will have a very small value of s—exactly what you want. 
If all the data have exactly the same value, then s = 0.

To help you understand the standard deviation a bit more, Figure 1.9 indicates the relation-
ship between the standard deviation of a data set and the shape of the data distribution (assum-
ing a Gaussian distribution). The mean of the distribution is in the center, where the zero is on 
the horizontal scale. The scale is marked in increments of one standard deviation: 1s, 2s, and so 
on. In a Gaussian data distribution, 68% of the data values will lie within one standard devia-
tion of the mean, 95.4% of the data will lie within two standard deviations of the mean, and 

99.7% of the data will lie within 
three standard deviations of the 
mean. Note that the units for s 
are the same as the units of the 
data. If your data are in mL, s 
will also be in mL. If the mean 
of the data is 75.5 mL and s = 
3.1 mL, then 68% of the data lie 
between 72.4 mL and 78.6 mL. 
If s is only 1.1 mL, then 68% of 
the data lie between 74.4 mL and 
76.6 mL—a narrower distribu-
tion with less uncertainty in the 
measurements.

The sample standard devia-
tion is often used as a measure 
of uncertainty in a data set. As 
I wrote above, all measurements 

contain error; that’s just a fact of life. All measurements made with enough precision will show 
variation, and together the values will form a distribution, indicating that there is uncertainty 
as to the true value of the parameter being measured. Quoting the value of s for a set of data is a 
very common way of indicating the uncertainty in the data. All computer spreadsheet applica-
tions and graphing calculators can calculate the sample standard deviation. Just enter your data 
and look up how to run the calculation of the sample standard deviation on your device.

1.2.6 Calculating Percent Difference
The topic in this section applies primarily to the experiments you will perform as part of 

your study of physics. I am including the topic here because it addresses one of the common 
mathematical tools we use to analyze the data taken in an experiment and compare them to the 
predictions we would make based on our theoretical understanding of how nature works. (We 
will address the topic of theories in the next section.)

One of the conventional calculations in high school and college physics experiments is the 
so-called “experimental error.” Experimental error is typically defined as the difference between 
the predicted value (which comes from scientific theory) and the experimental value, expressed 
as a percentage of the predicted value, or

experimental error =
predicted or accepted value− experimental value 

predicted or accepted value
×100%
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Although the term “experimental error” is widely used, it is in my view a poor choice of 
words. When there is a mismatch between theory and experiment, the experiment may not be 
the source of the error. Often, it is the theory that is found wanting. This is how science advances.

It is, of course, true that at the introductory and intermediate level students are not generally 
engaged in research that uncovers weaknesses in scientific theories. At this level, the difference 
between prediction and experimental result may well be due entirely to “experimental error” 
arising from experimental limitations or inaccuracies. However, I prefer that students develop 
scientific habits of mind, and in the real world of scientific research in physics and engineering, 
the measurements are as accurate as the experimenters know how to make them, and one does 
not know whether differences between mathematical prediction and experimental result are due 
to the mathematical model or error in the experiment.

I prefer to use the phrase percent difference to describe the value computed by the above 
equation. When quantitative results are compared to quantitative predictions or accepted val-
ues, students should compute the percent difference as

percent difference =
predicted or accepted value− experimental value 

predicted or accepted value
×100%

One more note. In the study of statistics, there is a calculation call the “percentage differ-
ence,” in which the difference between two values is divided by their average. To avoid potential 
future confusion, you should note the distinction between the calculation we are using here and 
the one arising in statistics.

1.3	 Modeling Nature

1.3.1 Science as Mental Model Building
Students usually find the study of physics to be fascinating and rewarding—even though it is 

also very challenging. This is because physics is all about modeling the fundamental interactions 
of the matter and energy the world is composed of. The fact that humans can accurately model 
nature with mathematics is a wonderful consequence of God’s design: God made the world in 
such a way that it lends itself to mathematical characterization, and God made human beings 
with the mental ability to imagine mathematical structures. The world’s mathematical proper-
ties and our mathematical abilities fit together extremely well, and the result is that over the past 
400 years, the accomplishments in the field of physics have been nothing short of stupendous.

Before we dive into modeling nature with mathematics, we need to pause and consider again 
how the modeling process works in science, and what kind of knowledge science provides for us. 
It is helpful to think of science as the process of building “mental models” of the natural world. 
These mental models are called theories. The information we use to build our mental models—
scientific facts—comes from experiments, observations, and inferences from these.

The theoretical models developed by scientists are the basis for our entire understanding 
of how the natural world functions. Successful theories are those that account for the facts we 
know and lead to new hypotheses (predictions) that can be put to the test. It is helpful to think 
about the relationship between facts, theories, hypotheses, and experiments as illustrated in 
Figure 1.10. This diagram illustrates what I call the Cycle of Scientific Enterprise. You may have 
studied this diagram before in a previous class. It is important for every student to develop a 
correct understanding of the kind of knowledge scientific study provides for us. The goal of sci-
ence is to uncover the truth about how nature works, but scientific theories are always works in 
progress. Even our best theories are provisional and subject to change. For this reason, science 
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is not in the business of making truth claims. It is in the business of modeling how nature works 
with theories based on research.

As our theories develop over time, our hope is that they get closer and closer to the truth, the 
amazing and profound truth about mysteries such as what protons and electrons are, why they 
have the properties they have, and how the two most successful theories of the 20th century—
quantum mechanics and general relativity—can be reconciled with each other. But the truth 
about nature is always out in front of us somewhere, always outside of our grasp. To know the 
truth about nature we would have to understand nature as God understands it. We are nowhere 
close to that.

For this reason, all scientific knowledge—facts and theories—is regarded as provisional. 
Facts may be regarded as correct, and theories may be regarded as our best approximation to 
the reality of nature, but all such knowledge is subject to change, to being replaced by more ac-
curate facts or theories.

1.3.2 Truth and Facts
Christians believe in truths that have been revealed to us, that are absolute and unchanging. 

Scientific facts, by their very nature, are not like this, so definitions for truth and for scientific 
facts must take this into account. First we will look at two ways that humans can know truth.

One way we know truth is when it is evident or obvious to us. For example, it is evident or 
obvious to you that you are awake right now while you are reading this text. Thus, it is correct 
to say that it is true you are awake. Likewise, you probably know if you have eaten a meal within 
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Figure 1.10. The Cycle of Scientific Enterprise.
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the past three days. If so, then it is obvious to you that if you said, “I have eaten a meal within the 
past three day” you would be speaking the truth.

Knowing obvious truths is clearly an important part of living as a human being in God’s 
world. God has made us so we can know truth about the world around us just by being here, 
seeing things, and remembering things. We rely on the stability of the world around us and our 
memories of it, because if it were otherwise we would probably all go crazy. The stability of the 
world and our memories are parts of the gift of creation God has given to us.  

A second important way for us to know truth is for God to reveal it to us. Much truth is 
knowledge that is revealed to us by God, either by Special Revelation or by General Revelation. 
Special Revelation is the term theologians use to describe truths God teaches us in the Bible, 
his Holy Word. General Revelation refers to truths God teaches us through the world he made. 
Sometimes people describe Special and General Revelation as the two “books” of God’s revela-
tion to us, the book of God’s Word (the Bible) and the book of God’s Works (nature).

Since truth is obvious, or revealed by God (either through his word or his works), this means 
that truth is not discovered the same way scientific facts are discovered. Truth is true for all 
people, all times and all places. Truth is permanent and never changes. Some examples of re-
vealed truths are:

•	 Jesus is the divine Son of God (Matthew 16:16).
•	 All have sinned and fall short of what God requires (Romans 3:23).
•	 All people must die once and then face judgment (Hebrews 9:27).
•	 God is the creator of all that is (Colossians 1:16, Revelation 4:11).
•	 God loves us (John 3:16).

Each of these statements is true, and we know they are true because God has revealed them 
to us in his word. (The reasons for believing God’s word are important for all of us to know and 
understand, but that is a subject for a different course of study.) These truths are all unchanging, 
just like all truth. The distinction between truth and scientific facts, which I will describe in the 
next section, is crucial. As believers, we embrace the absolute truths we find in Scripture. Facts 
can change; truth does not. If we confuse these terms we may have a hard time discussing and 
defending the faith and distinguishing between the precious truths we know absolutely, such as 
that Jesus is our redeemer and rose from the dead, and things that may turn out not to be cor-
rect after all.

1.3.3 Facts, Theories, Hypotheses, and Experiments
To expound on the Cycle of Scientific Enterprise a bit further, the following are some defini-

tions to keep in mind as you consider the mathematical models we develop in coming chapters.

Scientific Facts   A fact is a proposition based on a large amount of scientific data that 
is correct as far as we know. Facts are discovered by experiment, observation, and inferences 
from experiments and observations. Facts can and do change as new scientific knowledge—new 
data—is acquired. Since facts are always subject to change, careful scientists will usually avoid 
terms such as true or proven to describe facts. Instead, we say a fact is correct as far as we know.

Scientific facts are just a small step away from raw data. To talk about what facts mean, we 
must relate them together in a consistent explanatory framework. This is where theories come 
in.

Theories   A theory is a mental model that accounts for the data (facts) in a certain field of 
research, and attempts to relate them, interpret them, and explain them. Scientific theories are 
successful if they repeatedly allow scientists to form new hypotheses that can be confirmed by 
experiment. Successful theories are the glory and goal of science. Nevertheless, theories, like facts, 
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are provisional and subject to change. Indeed, theories are almost constantly evolving as re-
search continues. And as with facts, when referring to theories, we avoid terms like true or prov-
en. Instead, we speak in terms of how successful theories have been in generating hypotheses 
that are confirmed by experiments, that is, how accurately predictions derived from the theory 
match the results of experiments. A widely accepted scientific theory should be understood as 
our best explanation at present—our best model of how nature works.

It is important to realize that there is no scientific knowledge that is not theoretical. That is, 
data or facts by themselves don’t tell us anything apart from the theories we have to account for 
and explain the facts. For example, it is a scientific fact that radium is radioactive; a lump of it 
glows constantly from the radiation it emits. But so what? What does this bare fact mean and 
what is its significance? What is radiation and what causes it? Our present theoretical model 
associates this type of radiation with the atomic nucleus and the process of nuclear decay. Some 
nuclear structures are less stable than others, and larger atoms with unstable nuclei typically ex-
hibit nuclear decay until the nucleus reaches the stable structure of the nucleus of lead, element 
82. Each different radioactive element decays at a rate that is very predictable using a statisti-
cal mathematical model. With this theoretical basis, we understand the behavior of the atomic 
nucleus. The fact of nuclear decay is explained and understood in terms of nuclear theory.

It is also important to note that scientific theories need to be testable. A theory that does not 
lead to testable hypotheses has no chance of gaining credibility and remains at the level of con-
jecture. For a theory to be well established, it must lead to hypotheses that can be put to the test.

Hypotheses   A hypothesis1 is an informed prediction about what will happen in certain 
circumstances. Every hypothesis is based on a particular theory. It is hypotheses that are tested  
and thereby confirmed or disconfirmed by scientific experiments. To form an experimental hy-
pothesis, the scientist must understand the subject at issue according to a theoretical framework 
of some kind. This theoretical framework will determine the hypotheses scientists form and test.

For an example, we can continue with the theory of nuclear decay. We have found that all the 
elements discovered so far with atomic numbers Z = 84 and higher are radioactive. Our theory 
of nuclear stability accounts for this. An obvious hypothesis we could form regarding other 
heavy elements not yet discovered—elements with atomic numbers Z = 119 and higher—is that 
when we are able to identify such an element, we will expect atoms of the element to decay due 
to the instability of their nuclei.

Experiments   An experiment is a test designed to confirm or disconfirm a particular hy-
pothesis. If a hypothesis is confirmed through experiment, and if other scientists are able to 
validate the confirmation by replicating the experiment, then the new facts gained from the 
experimental results become additional support for the theory the hypothesis came from.

Continuing again with the theory of nuclear decay as an example, experiments in recent de-
cades have been conducted repeatedly to identify the elements in the last period of the Periodic 
Table of the Elements. Since plutonium, Z = 94, is the heaviest naturally occurring element, 
scientists have expected that any element discovered with an atomic number greater than 94 will 
exhibit nuclear decay. And so far, experiments have repeatedly demonstrated this to be the case.

Sometimes, an experiment or series of experiments disconfirms a hypothesis. When this oc-
curs, it is not correct to say that the theory that led to the hypothesis is immediately disproved. 
In fact, there are many factors that could lead to a disconfirmation. This is why the Cycle of 
Scientific Enterprise includes the steps called Analysis and Review. The Review process essen-
tially works in reverse around the Cycle of Scientific Enterprise to discover why the hypothesis 

1	 A generation ago, correct usage required us to write an hypothesis, and some writers continue this us-
age today. I now use the more common contemporary usage a hypothesis.
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was not confirmed. The first step in the review process is to review the experiment: protocols, 
instruments, data collection methods, apparatus, lurking variables, and a host of other factors 
that could have led to the negative result. If the experimental data appear to be valid, the review 
process turns next to the hypothesis. Contemporary theories are mathematically complex and it 
is possible that the hypothesis was not properly formed from the theory. If the hypothesis checks 
out, the final step is to examine the theory itself. A disconfirmed hypothesis means the theory 
did not deliver a correct prediction, and such a failure calls the theory’s integrity into question. 
No theory is perfect and no theory explains all relevant data. A failed prediction indicates that 
there is more to the picture than scientists know about. A long series of failed predictions wears 
down a theory’s credibility, setting the stage for eventual replacement by a new theory that ex-
plains all the data more adequately than its predecessor. However, the complexity of scientific 
theories these days is such that producing a new theory can be very challenging.

Physics is a subject loaded with facts and heavily based on theories—models—that we know 
are incomplete descriptions of nature. That is why the research continues, as our models (hope-
fully) get nearer and nearer to the truth.

1.4	 Vector Methods

1.4.1 Scalars and Vectors
When we model nature mathematically, we describe the quantities we seek to measure with 

variables and we develop equations that reflect our understanding of the relationships between 
the variables that are present in nature. One of the most fundamental aspects of describing 
quantities with variables is that simple quantities in nature may always be classified as one of 
two distinct types—scalars and vectors.2 Representative examples of scalar and vector quanti-
ties are listed in Table 1.6. It is likely that the term displacement is unfamiliar. A displacement 
is a directed distance, or a distance along a certain direction. The discussion below will further 
clarify the meaning of this term.

A scalar quantity can be expressed with a sin-
gle value that indicates the size or amount of the 
quantity. Vector quantities cannot be expressed 
in terms of a single value. Vector quantities are 
inherently directional in character, and to express 
the value of a vector quantity both the magnitude 
and direction of the quantity must be stated.

For example, the temperature at a certain spot 
in a room can be expressed with a single value, 
such as 21°C, and thus temperature is a scalar 
quantity. By contrast, forces are directional and 
are thus vectors, so to describe a force completely the direction of the force must be stated along 
with its magnitude. The gravitational attraction of the earth on an object is an example of a 
force, and regardless where the object is, the direction of the force on the object is down (that is, 
toward the center of the earth). As another example, the force on a surface due to the pressure of 
a gas or liquid is perpendicular to the surface.

Two of the common vector quantities in physics, displacement and velocity, have common 
terms that refer to the magnitude of the vector (rather than both the magnitude and direction). 

2	 There is a third type—tensors—but tensor mathematics is very complex and does not typically appear 
in introductory or intermediate physics courses.

Scalar Quantities Vector Quantities
temperature velocity

mass acceleration
energy force

pressure displacement
density momentum

Table 1.6. Representative scalar and vector quantities.
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The magnitude of a displacement vector is called distance and the magnitude of a velocity vector 
is called speed. Since distance and speed refer specifically to the magnitudes of vectors, they refer 
to scalar quantities. If you say that a man walked 5 km, you have stated the distance the man 
walked—a scalar quantity. If you say that a man walked 5 km due northeast, you have stated the 
displacement the man underwent—a vector quantity. We will address conventions for specify-
ing a vector’s direction in a moment, but I will just note that there are a few common types of 
problems in physics that use geographical references to specify the direction of a vector, as I just 
did in this illustration.

Likewise, the term speed is a scalar quantity that refers to the magnitude of a velocity, a vector 
quantity. Thus, someone can refer to the speed of an electron as 276 m/s. But to state the velocity 
of the electron requires also stating its direction, which requires an angular reference of some 
kind. For solving problems in physics, the angular reference is often handled by representing the 
vector in question, the velocity of an electron in this case, as an arrow on a coordinate system. 
The magnitude of the vector is represented by the length of the arrow, and the direction of the 
vector is represented by the angle the arrow makes relative to the positive x-axis (or horizontal 
axis) in the coordinate system, as illustrated in Figure 1.11. As in trigonometry, positive angles 
are measured counterclockwise from the horizontal axis. With this in mind, one way of stating 
the velocity of the electron in the figure would be to use a symbol for the angle: 276 m/s,  = 42°. 
Another way to state the velocity is to write it out: 276 m/s at an angle of 42° relative to the posi-

tive x-axis. A third and very common notation is to use vari-
ables—an italicized letter for the magnitude and an italicized 
Greek letter for the angle, as in v = 276 m/s, θv = 42°.

You are not necessarily required to use the positive x-axis 
for specifying angles, and there will be times when it is more 
convenient to use a different reference. Any convenient refer-
ence (such as the positive y-axis) may be used, so long as the 
reference is specified. As a convention in physics, directions are 
usually specified as relative to the positive x-axis. In the absence 
of any other specification, this is assumed.

The conventions for the notation used to denote vector 
quantities are summarized in Table 1.7. In print, different fonts 
are used to indicate scalar and vector quantities. An italic font 

is typically used for scalar quantities; a bold font is standard for vector quantities. In a text like 
this one, I indicate a distance of 5 km by typing d = 5 km. To indicate the displacement of 5 km 
NE, I type d = 5 km NE. The electron speed would be printed as v = 276 m/s. Its velocity could 
be printed with an angle symbol as v = 276 m/s,  = 42°. However, not everyone recognizes the 
angle symbol, so it is more common (and formal) to use a variable for both the magnitude and 
direction, like this: v = 276 m/s, θ = 42°. If necessary, subscripts are used on the angle variables to 
make it clear which vector the angle is associated with: v = 276 m/s, θv = 42°. Another standard 

notation is to use the absolute value 
symbol to indicate a vector’s magnitude, 
and thus write |v| = 276 m/s, θ = 42°.

Obviously, it is difficult to use italic 
and bold fonts when you are writing by 
hand on your exercises and exams. In 
that case, the convention is to place a lit-
tle right-pointing arrow over a variable 
if you wish to indicate a vector, as shown 
in the table. Occasionally, printed mate-

In Print By Hand
Scalar d, v d, v

Vector d, v
r
d , 
rv

Magnitude of Vector d, v, |d|, |v| d, v, |
r
d |, | rv |

Angle of Vector θ, θ, 
Table 1.7. Notation conventions for scalar and vector 
quantities.

Figure 1.11. Specifying the direction 
of a vector quantity.

42°

x

y

276 m/s
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rials will use both bold print and an arrow over variable, such as rv . When writing by hand, the 
most common way to indicate the magnitude of a vector is to use the absolute value symbol with 
the variable inside with an arrow over it: |

r
d |.

1.4.2 How to Learn Vector Addition
You already know how to solve problems using scalar quantities. You simply add, subtract, 

multiply, divide, and so on. When we add numbers this way we are adding algebraically. How-
ever, solving problems involving vector quantities requires using vector arithmetic. When we 
add two vector quantities together we must add them vectorially. Since a large percentage of 
problems in physics involve vectors, it is essential that you master the rules of vector arithmetic 
immediately. I encourage you to study this section carefully and work the exercises until you 
are certain you can execute vector calculations just as reliably and efficiently as you can execute 
scalar calculations.

When solving vector problems in physics, graphical aids are universally used to set the prob-
lem up and put together a solution strategy. You will see this over and over in this text and you 
will need to draw similar graphical depictions to aid you in your solutions. As I explained above, 
vector quantities are represented graphically as arrows on a coordinate system. The length of the 
arrow represents the magnitude of the vector, and the direction of the vector is indicated by the 
angle it makes with a reference line (typically, the positive x-axis).

We will first consider vector addition (Sections 1.4.3 through 1.4.5). There are two ways to 
execute a calculation involving vector addition. One is to perform the calculation graphically, 
using a rule and protractor. This is a time-consuming method and the accuracy of your results 
will depend entirely on the accuracy of your drafting technique. The second method is to use 
trigonometry to work out an analytical solution. This method will deliver an accurate answer (as 
long as you do it correctly) and is much faster.

You might be thinking that we should dispense with the graphical approach and get straight 
to the trigonometric approach. However, decades of experience teaching high school physics 
has convinced me that you should learn the graphical method first and solve a few problems 
with it so that you learn to visualize what you are doing. After that, you can learn the trigono-
metric approach and use it exclusively from that point onwards. I have seen many occasions 
when students tried to jump into the trigonometric methods of vector arithmetic without learn-
ing the graphical approach first. Most of the time this results in students having very little un-
derstanding of what they are doing, and this leads to disaster when we begin solving problems 
using vector methods. The moral of this story is that you need to spend a day with your rule and 
protractor getting the hang of this, even though it may seem like you’re back in Geometry class. 
A couple of hours of practice will pay off and help ensure that you quickly and effectively learn 
the trigonometric methods to follow.

After we address vector addition in the next three sections, we will address vector multipli-
cation in Sections 1.4.6 and 1.4.7. You will not need to know the methods presented in Section 
1.4.7 until we get to the chapters on Static Equilibrium (Chapter 4) and Energy (Chapter 5). But 
I include the material in this chapter with the other material on vector arithmetic to make it easy 
to find later. For now, study Sections 1.4.3 through 1.4.5 carefully and do the problems in the 
exercises. Then proceed to Chapter 2. When the time comes that you need to know about vector 
multiplication, I will send you back to Section 1.4.7 to learn about it.

1.4.3 Vector Addition—the Graphical Method
Two vectors, A and B, are shown in Figure 1.12. Each has a tip and a tail, as indicated. The 

angle a vector makes is measured at the tail of the vector, as if the tail of the vector were placed 
at the origin of the coordinate system. The lengths of the vectors are drawn proportionally, us-
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ing an appropriate scale, such as 1/4 inch = 1 unit, 
1 inch = 10 units, etc. In the figure, vector A has a 
magnitude of 6.2 units, and is at an angle of 42° rel-
ative to the positive x-axis. (Just imagine the x-axis 
beginning at the vector’s tail and pointing to the 
right. It is not necessary actually to draw an axis.) 
Vector B has a magnitude of 9.5 units, and is at an 
angle of –15° relative to the positive x-axis. Note 
that in the diagram, the angle of B is labeled with 
a positive value. The geometric value of the angle 
between those two line segments is 15°. However, 
the direction of the vector must be stated as –15°, 
because the 15° angle the vector makes with the 

positive x-axis is in the clockwise direction, not the coun-
terclockwise direction.

As with scalar addition, vector addition is commuta-
tive—several vectors may be added in any order and the re-
sult will be the same. The result of a vector addition is called 
the resultant vector, or simply the resultant. The resultant is 
a new vector, with its own magnitude and direction.

Graphical vector addition is illustrated in Figure 1.13. 
To add vectors A and B, place the tail of the second vector at 
the tip of the first vector. (Again, the operation is commuta-
tive; it doesn’t matter which is first or second.) Preserve the 
vectors’ lengths and angles while doing this. The resultant 

vector, R, is the vector whose tail is at the tail of the first vector and 
whose tip is at the tip of the last vector. In other words, draw R so 
that it points from the tail of the first vector to the tip of the last vec-
tor. Then measure the length of R with a rule to get the magnitude 
of R, denoted by |R| or R, and use a protractor to measure the angle 
R makes with the positive x-axis, denoted by θR. Drawing these vec-
tors and making the measurements indicates that |R| = 13.9 units, 
and θR = 7.0°.

In Figure 1.14, the same two vectors are depicted but the order 
of the addition is reversed—vector A is added to B, instead of B 
being added to A. This diagram demonstrates the commutativity of 
vector addition, since the resultant R is the same vector as before.

In Figures 1.13 and 1.14, the vectors are added by drawing them 
tip to tail. However, Figure 1.15 demonstrates one additional feature 
of vector addition. If both vectors are drawn with their tails at the 
origin, they form adjacent sides of a parallelogram. Completing the 
other two sides, you can see that the resultant R of adding A + B is 
the diagonal of the parallelogram. Be careful here though: drawing 
a vector along the other diagonal, from the tip of A to the tip of B, 
would represent an entirely different addition problem: A + R = B. 
This is not the same as A + B = R. Take care to avoid this confusion.

When adding vectors graphically, draw the vectors with a sharp 
pencil on graph paper, using as large a scale as possible. The lines 
on the graph paper will assist you in orienting your protractor and 

Figure 1.13. Graphical addition of vectors 
A and B to produce resultant vector, R.

A
42°

B15°

R θR

Figure 1.12. Graphical representations of two 
vectors, A and B.

tip

tail

A
42°

6.2 units

tip

tail

B
15°

9.5 units

A
42°B

15°

R θR

Figure 1.14. Adding vector A 
to vector B produces the same 
resultant as adding B to A.

Figure 1.15. When both vectors 
A and B are drawn at the origin, 
they form adjacent sides of a 
parallelogram. The diagonal of 
the parallelogram is the resultant 
vector, R.

A
42°

B
15°

R
θR
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a large scale will reduce the error caused by inaccuracies in your drawing. Additional drafting 
techniques for performing graphical vector addition are shown in Figure 1.16.

 Example 1.1

A girl is in a large flat meadow mapping out a playing field for a new game. From her starting lo-
cation, she walks 21 meters north, then 27 meters southeast, then 11 meters northeast. a) What 
is the total distance the girl walks? b) Use graphical vector addition methods to determine the 
girl’s displacement, d, from the starting location after these maneuvers have been completed. c) 
At the end, how far is the girl from her starting point?

a) The total distance walked is simply the sum of the distances walked:

 21 m + 27 m + 11 m = 59 m

b) The resultant vector from adding together the three displacement vectors gives us the girl’s 
displacement at the end. Working this problem on regular 8.5 in × 11 in graph paper, a conve-
nient scale to use would be 0.5 cm = 1 m. The three walking distances then become:

Figure 1.16. Drafting techniques for 
performing graphical vector addition.

Set up axes and mark the 
angle of the first vector

Draw a light line along 
where the vector will go

Mark the length of the 
vector on the line

Draw the vector Set up a new set of axes at 
the tip of the first vector, 

and mark the angle of the 
second vector

Measure and draw in the 
second vector as before

Draw the resultant

1 2 3

4 5 6

7
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21 m ⋅0.5 cm =10.5 cm
27 m ⋅0.5 cm =13.5 cm
11 m ⋅0.5 cm = 5.5 cm

The vector addition is illustrated in Figure 
1.17. We will let north be at the top of the page. 
Beginning at an origin placed toward the left 
side of the page, we first draw a vector with 
a length of 10.5 cm straight up. From the tip 
of this vector, we draw a second vector with a 
length of 13.5 cm at an angle of –45°. From the 
tip of the second vector we draw a third vector 
with a length of 5.5 cm at an angle of 45°.

Drawing this problem myself as accurately as 
possible, I measured the resultant (the black vector in the figure) to be 14.25 cm long at an angle 
of 20.0°. Converting the scaled length back into meters:

14.25 cm ⋅ 1 m
0.5 cm

= 28.5 m

This gives |d| = 28.5 m and θd = 20.0°. Rounding to two significant digits, we have |d| = 29 m and 
θd = 2.0 × 101 degrees.

c) The distance from the starting point is the magnitude of the displacement vector. Thus,

d = 29 m.

1.4.4 Additional Details About the Direction of a Vector
There are two additional details to add regarding the way we represent the direction of a vec-

tor. First, any vector can be represented with either a positive or negative angle, as illustrated by 
the force vector in Figure 1.18. In other words,

35 N,  102° = 35 N,  –258°

These are simply two different ways of representing the same vector. However, in practice, an-
gles greater than 180° are used infrequently except when 
specifying a direction with a compass heading, also called 
bearing, illustrated in Figure 1.19. A bearing uses the 360° 
compass, with due north at 0°. Angles increase from zero by 
going clockwise from due north. (Thus, due east is a bear-
ing of 90°.) The use of bearings for specifying angles comes 
up frequently in problems involving the navigation of ships 
and aircraft. 

The second point is quite important and comes up con-
stantly. By convention, the magnitude of a vector is always 
positive. However, when solving vector addition problems 
using the trigonometric method (coming up next), we rou-

Figure 1.18. Vector F can be represented 
equivalently as 35 N at an angle of 102° or 
as 35 N at an angle of –258°.

102°

F = 35 newtons

258°

Figure 1.17. Three displacements and the resultant 
displacement d for Example 1.1.

13.5 cm

10
.5

 c
m

10.5 cm

θd

d
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tinely encounter vectors or vector “components” (a term explained 
in the next section) that point in the direction of the positive x-
axis, the negative x-axis, the positive y-axis, or the negative y-axis. 
We designate these vectors or vector components as positive if 
they point in the direction of the positive x- or y-axis; we designate 
them as negative if they point in the direction of the negative x- 
or y-axis. The important point to note here is that a negative sign 
in front of the magnitude of a vector quantity does not mean the 
magnitude is negative. The negative sign is understood to denote 
the direction of the vector. The use of a negative sign to indicate 
that a vector points in the direction of the negative x- or y-axis oc-
curs frequently once we begin using trigonometry to handle our 
vector arithmetic. This is our next topic.

1.4.5 Vector Addition—the Trigonometric Method
You now know that any pair of vectors can be added together to 

produce a resultant vector. Of course, this implies that a given vector can be represented as the 
sum of an infinite number of different vector pairs. In particular, any vector can be represented 
as the sum of two vectors that are parallel to the x- and y-axes.

Going back to the electron we considered in Section 1.4.1, 
Figure 1.20 shows the electron’s velocity vector v (in red) with 
its magnitude of v = 276 m/s at an angle of θv = 42.0°. (I added 
a third significant digit to the angle for greater precision.) Also 
shown in the diagram are two other vectors parallel to the x- 
and y-axes labeled vx and vy. As you can see, the velocity vector 
is the resultant of the vector sum of vx and vy. Together, these 
three vectors form a right triangle. Simple right-triangle trigo-
nometry allows us to calculate the magnitudes vx and vy:

vx = 276 m
s
⋅cos42.0° = 205 m

s

vy = 276 m
s
⋅sin42.0° =185 m

s

The two vectors parallel to the x- and y-axes with magnitudes vx and vy are called the x- and 
y-components or horizontal and vertical components or rectangular components of v. The great 
thing about these components is that they add up (vectorially) to v. We can use this fact to de-
velop a nice analytical method for calculating a vector sum. We do it by first determining the 
x- and y-components of the vectors being added, and then using these to determine the x- and 
y-components of the resultant. Here is the rule for obtaining the components of the resultant:

•	•	 The x-component of the resultant of a vector sum is equal to the sum of the x-components 
of the vectors being added. Likewise, the y-component of the resultant of a vector sum is 
equal to the sum of the y-components of the vectors being added. 

This rule is very handy because adding up components is done algebraically—you just add 
them up, treating components that point up or to the right as positive and those that point 
down or to the left as negative. Once the components of the resultant have been determined, 
the magnitude and direction of the resultant can be determined using two additional relations 
from right-triangle trigonometry. Referring again to Figure 1.20, you can see that the following 
equations hold:

Figure 1.19. Velocity vector v 
shown as a bearing, where the 
angle is measured clockwise from 
north with due north at 0°.

θv = 348°

v = 225 km/hr

N

EW

S

Figure 1.20. The x- and y-components 
of velocity vector v.

θv = 42.0°

x

y

v = 276 m/s

vx

vy

v
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v = v = vx
2 +vy

2

θv = tan−1 vy

vx

To illustrate this method, we will go back to our first graphical vector problem.

 Example 1.2

Determine the resultant, R, of the sum of the following two vectors:

vector A: A = 6.2 units, θA = 42°
vector B: B = 9.5 units, θB = –15°

First, we determine the x- and y-components of A and B:

Ax = AcosθA = 6.2cos42° = 4.61 units
Bx = BcosθB = 9.5cos −15°( )= 9.18 units

Ay = AsinθA = 6.2sin42° = 4.15 units

By = BsinθB = 9.5sin −15°( )= −2.46 units

Notice that according to our standard practice for dealing with significant figures, I have kept an 
extra digit in these intermediate results. Now, the x-component of R, Rx, is the sum of Ax and Bx:

Rx = Ax + Bx = 4.61 units + 9.18 units = 13.79 units

Likewise, the y-component of R, Ry, is the sum of Ay and By:

Ry = Ay + By = 4.15 units – 2.46 units = 1.69 units

With the components of R, we can determine its magnitude and direction, R and θR:

R = Rx
2 +Ry

2 = 13.79 units( )2 + 1.69 units( )2 =13.9 units

θR = tan−1 Ry

Rx

= tan−1 1.69
13.79

= 7.0°

Comparing these results to the graphical results we obtained previously, we see that the values 
agree. But accuracy is difficult when measuring angles with a protractor; generally, it is easier to 
obtain accurate values with the trigonometric method.

Finally, following the significant digits in these calculations requires us to get quite pedantic. 
The angle is not difficult: we began with values containing two digits of precision, so our angle 
has two significant digits. The magnitude of R is more complicated. Each of the squared values 
in the radical has an extra digit. Keeping only one extra digit at every step, here’s what happens: 
Squaring 13.79 and 1.69 gives 190.2 and 2.86. Adding these drops a decimal, giving 193.1. The 
square root is 13.90, which still has one extra digit. Rounding gives 13.9, one more digit of preci-
sion than we started with. This often happens when using the addition rule. 
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As an additional example, we will rework Example 1.1 so we can compare our graphical 
result to the more accurate analytical result.

 Example 1.3

A girl is in a large flat meadow mapping out a playing field for a new game. From her starting lo-
cation, she walks 21 meters north, then 27 meters southeast, then 11 meters northeast. a) What 
is the total distance the girl walks? b) Use trigonometric vector addition methods to determine 
the girl’s displacement from the starting location after these maneuvers have been completed. 
c) At the end, how far is the girl from her starting point?

a) The total distance walked is still the sum of the distances walked:

 21 m + 27 m + 11 m = 59 m

b) We will label the three displacements of the girl’s walk as vectors d1, d2, and d3. These three 
vectors are:

d1: d1 = 21 m, θ1 = 90°

d2: d2 = 27 m, θ2 = –45°

d3: d3 = 11 m, θ3 = 45°

These vectors, along with the resultant we are seeking and all their components, are shown in 
Figure 1.21. As you can see, the diagram makes it apparent that the x-component magnitudes 
add up to Rx and the y-component magnitudes add up to Ry.

We begin by calculating the x- and y-components 
for each displacement vector. Notice that since d1 is 
vertical, it has no horizontal component (that is, d1x 
= 0).

d1x = d1cos θ1 = 21 m ∙ cos 90° = 0

d2x = d2cos θ2 = 27 m ∙ cos (–45°) = 19.1 m

d3x = d3cos θ3 = 11 m ∙ cos 45° = 7.78 m

The magnitude of the x-component, Rx, of the resul-
tant, R, is the sums of these x-components.

Rx = 0 m + 19.1 m + 7.78 m = 26.9 m

Now we repeat the calculations for the y-compo-
nents. Notice that since d1 is vertical, its vertical 
component is equal to itself.

d1y = d1sin θ1 = 21 m ∙ sin 90° = 21.0 m

d2y = d2sin θ2 = 27 m ∙ sin (–45°) = –19.1 m

d3y = d3sin θ3 = 11 m ∙ sin 45° = 7.78 m

Notice that d2y is negative. As I mentioned in the previous section, a negative sign on a vector 
component indicates its direction. Here d2y points down, so the component is negative. The 
magnitude of the y-component, Ry, of the resultant, R, is the sum of these y-components.

Figure 1.21. Three displacements, resultant, and 
all components. Note: Components d3y and Ry are 
collinear, so they have been displaced slightly left 
and right to make d3y visible.

d2

d1

d3

d2x

d2y

d3y

d3x

Rx

Ry

R
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Ry = 21.0 m – 19.1 m + 7.78 m = 9.7 m

Finally, we calculate the magnitude and direction of the resultant:

R = Rx
2 +Ry

2 = 26.9 m( )2 + 9.7 m( )2 = 28.6 m

θR = tan−1 9.7
26.9

=19.8°

Rounding these to two significant digits yields the same results as in the graphical solution to 
this example problem.

One final point remains for this section. Recall from your study of trigonometry that the 
range of the inverse tangent function is –π/2 to π/2, or –90° to 90°. This means that when you 
compute the angle of a vector pointing into the second or third quadrant, the inverse tangent 
function will not give you the angle you require without adding an additional 180°.

To illustrate, a vector with horizontal and vertical components of –5 m and 3 m, respectively, 
lies in the second quadrant and has an angle between 90° and 180°, but the inverse tangent func-
tion gives tan–1(–3/5) = –31°. The correct angle is –31° + 180° = 149°. Similarly, a vector with 
horizontal and vertical components of –5 m and –3 m, respectively, lies in the third quadrant 
and has an angle between 180° and 270°, but the inverse tangent function gives tan–1(3/5) = 31°. 
The correct angle is 31° + 180° = 211°. When computing an angle with the inverse tangent func-
tion, always work with a diagram of the vector in front of you and correct the results of the inverse 
tangent function so that the angle you give to the vector makes sense in light of its position in the 
coordinate system. 

1.4.6 Multiplying a Vector by a Scalar
The simplest computation involving vectors is when a vector is multiplied by a scalar. When 

a vector is multiplied by a positive scalar, the effect is to change the vector’s magnitude; the di-
rection is unaffected. To illustrate, consider the following velocity vector:

v: v = 25.0 m/s, θv = 67°

If we multiply this velocity by a scalar quantity such as a mass m = 5.00 kg, 
we would obtain a new vector with the same direction, a different magni-
tude, and a different set of units. As it turns out, the product of mass and 
velocity is called the momentum, our topic in Chapter 6. The symbol for 
the vector momentum is p. So using this symbol, we calculate the magni-
tude and direction of the momentum vector in this illustration as follows:

p = m ∙ v 

p = mv = (5.00 kg) ∙ (25.0 m/s) = 125 kg∙m/s

θp = θv = 67°

The two vectors v and p are shown in Figure 1.22.
Multiplying a vector by a negative scalar also occurs in some important 

topics in physics, such as forces on charged particles in electric fields. The 
negative sign on the scalar reverses the direction of the product vector you 

Figure 1.22. Vector p is 
obtained by multiplying 
vector v by a positive 
scalar.

v = 25.0 m/s

p = 125 kg∙m/s

θ = 67°
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obtain from the multiplication. In the previous two sections, we have seen that 
negative signs are used to indicate a negative direction. As illustrated in Figure 
1.23, when multiplying by a negative scalar, the effect of the negative sign is to 
reverse the direction of the product vector relative to the original vector in the 
multiplication—an angular difference of 180°. To illustrate, consider a vector 
A with a magnitude of A = 2.25 units and a direction of 105°. If we multiplied 
this vector by the scalar quantity –1.70 units, the new vector B would have a 
magnitude of B = 3.83 (with appropriate units) and a direction of –75°.

1.4.7 Vector Multiplication
As mentioned in Section 1.4.2, you will probably skip this section until you 

need to learn vector multiplication methods (Chapters 4 and 5). Of course, 
if you just can’t wait to learn how vector multiplication works, then read on.

We must pause here and remind ourselves that we use vector methods in 
physics because we are modeling nature. Some quantities in nature are di-
rected, such as forces and velocities. Some quantities in nature are not directed, such as mass and 
energy. When we multiply two quantities together to get a third quantity, the third quantity itself 
can either be a directed quantity—a vector—or a quantity without any direction—a scalar. This 
implies that we need two different ways to perform the multiplication of two vectors—one that 
results in a scalar and one that results in a vector. This is exactly what we do have. The two vec-
tor multiplication operations are called the dot product and the cross product. The dot product 
results in a scalar; the cross product results in a new vector.

The Dot Product   The dot product of vectors A and B is defined as follows:

A ∙ B  = |A||B|cos θ  = ABcosθ			   (1.1)

where θ is the angle between A and B. The product of this operation is a scalar, and the dot 
product is often referred to as the scalar product. The value of the scalar product is |A||B|cos θ .

To illustrate the meaning of the dot product, consider the two vectors, A and B, shown in 
Figure 1.24. The vectors are separated by the angle θ. Imagine vector B as the 
hypotenuse of its own right triangle with the angle θ. As illustrated on the 
left side of Figure 1.25, the product Bcosθ is the magnitude of the compo-
nent of B that is parallel to A. So the product ABcosθ is the product of the 
magnitudes of two vectors, A and the component of B that points in the same 
direction as A.

Now consider the right side of Figure 1.25. Imagine vector A as the hy-
potenuse of its own right triangle with the angle θ. The product Acosθ is the 
magnitude of the component of A that is 
parallel to B. So the product ABcosθ is the 
product of the magnitudes of two vectors, 
B and the component of A that points in 
the same direction as B.

It does not matter which way you think 
about the result from the scalar product—
as the product of A and the magnitude of 
the component of B parallel to A, or B and 
the magnitude of the component of A par-
allel to B. Either way, the scalar product 
computes the product of two magnitudes 

θ

A

B

Figure 1.24. Vectors A 
and B separated by an 
angle θ.

Figure 1.23. Vector 
B is obtained by 
multiplying vector A 
by a negative scalar.

B = 3.83 units

A = 2.25 units

θA = 105°

θB = –75°

θ B

B cos θ

A

B cos θ

θ

A

A cos θ

B

A cos θ

Figure 1.25. Two ways of interpreting the dot product A ∙ B.
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that point in the same direction. The way you think about it when you are working out a prob-
lem depends on the problem.

A common example of the use of the dot product in physics is in computations involving 
work. In physics, mechanical work (W) is defined as a process of energy transfer in which energy 
is transferred from one object to another by means of a force (F) from the first object acting on 
the second object and pushing it through a given distance (d). You may have seen the definition 
of work as

W = F ⋅d

Energy is measured in joules (J), one joule being equal to one newton-meter (N∙m). Since 
work is a form of energy, the units for work are also joules. The formula above applies when the 
force on an object and the direction the object moves point in the same direction. However, 
more generally, forces are vectors and distances with directions are displacements, which are 
also vectors. Work is energy, and energy is a scalar. The product of force and distance is really a 
scalar product. Thus, from Equation (1.1) the more general definition of work is

W = F ∙ d = |F||d|cos θ = Fdcos θ

 Example 1.4

Figure 1.26 shows a carton on the floor being pulled by a 
force of 75 newtons (75 N). The force, which could be due 
to a rope or cable attached to the carton, is being applied at 
an angle of 35° relative to the floor. Determine the amount 
of work done on the carton if the carton moves along the 
floor a distance of 0.50 m. 

Using the floor as a reference for angles, the two vectors in 
this problem are:

F: 75 N,  35°

d: 0.50 m,  0°

The work is

W = Fd cos θ = (75 N) ∙ (0.50 m) ∙ cos 35° = 31 N ∙m = 31 J

Since the motion is in the same direction as the displacement d, it is useful to think of the sca-
lar product in this problem as the product of d and the magnitude of the component of F that 
points in the same direction as d, Fcosθ. Only the horizontal component of F contributes to 
the amount of work done. The vertical component of F points up, and since the carton does not 
move any distance vertically, the vertical component of F does not contribute to the work done.

The Cross Product   The result of a cross product calculation is a new vector, so the cross prod-
uct is often referred to as the vector product. Explaining this calculation requires describing two 
separate rules, one for the magnitude and one for the direction. We will address the magnitude 
first.

The magnitude of the cross product of two vectors A and B is defined as follows:

35°

F = 75 N

d = 0.50 m

Figure 1.26. A force of magnitude F acting 
on an object and pulling it a distance d.
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|A × B| = |A||B| sin θ = AB sin θ			   (1.2)

where, again, θ is the angle between A and B. As before in the dot product description, consider 
Figure 1.24, with two vectors separated by an angle θ. The entire description above of the two 
ways to think about the dot product applies here as well, only this time we are dealing with the 
sine of the angle instead of the cosine of the angle. This is illustrated in Figure 1.27. As you can 
see from the figure, regardless of how you think about it, the magnitude of the cross product is 
the product of the magnitude of one vector and the magnitude of the component of a second 
vector that is perpendicular to the first vector.

There is a mathematically sophisticated way to determine the direction of the vector prod-
uct, but we will not address it here. That method is useful for physics and engineering problems 
in three dimensions, but since the problems we treat in this text will all be in two dimensions, 
the more sophisticated method entails 
more complexity than we need. If you 
take courses in physics or engineering 
in college you will see it there. For our 
purposes, the so-called right-hand rule 
works well enough.

To begin, the direction of the vector 
product is perpendicular to the plane 
formed by the two vectors being mul-
tiplied. This means that there are two 
possibilities for the direction. Math-
ematically, we would say that the cross 
product is not commutative like the dot 
product is. In fact, the direction of A × B is exactly the opposite of the direction of B × A (al-
though their magnitudes are the same).

Figure 1.28 illustrates the use of the right-hand rule to determine the direction of A × B. 
(Hold your right hand up in the air and practice the motion while you read this!) Flatten your 
hand and stick your thumb out straight to the side. Now imagine placing vector A in the palm 
of your hand with the tip of the vector at your fingertips and the tail at the heel of your hand. 
Orient your hand so that your right palm 
can push or rotate A toward vector B, as 
indicated by the yellow arrows. (In the par-
lance of physics, this is called “crossing A 
into B.”) When your hand is oriented cor-
rectly, your thumb indicates the direction 
of the vector product A × B. The direction 
of the cross product A × B is perpendicular 
to both A and B.

Figure 1.29 shows the result of B × 
A. When B is crossed into A, the vector 
product points in the opposite direction. I 
didn’t show a hand in Figure 1.29, but you 
can see that if a hand were there we would 
be looking at the back of the hand with its 
thumb pointing down and the vectors on 
the other side of it out of view. (Use your 
own hand to convince yourself of this.)

Figure 1.27. Two ways of interpreting the magnitude of the 
cross product A × B.

θ B

B sin θ

θ

A
A sin θ

A B sin θ

B

A sin θ

Figure 1.28. Using the right-hand rule to determine the 
direction of the cross product A × B.

AB

A × B
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A common application of the vector product is in the computation 
of torque. A torque is the result of a force that acts on an object in a way 
that tends to cause rotation. As indicated by Figure 1.30, force F1 might 
cause the disk to move to the right if it was free to move, but it would 
not tend to cause the disk to rotate about its axle. However, force F2 acts 
on the disk in a way that tends to cause rotation on its axle. If the disk 
is free to rotate and force F2 is applied to the disk, then rotation will 
occur. The chain on a bicycle pulls on the sprocket just like force F2 in 
the figure.

Torque is a vector quantity. The disk in Figure 1.30 can rotate in two 
different directions. If force F2 pulls to the right as shown, a clockwise 
torque is produced and the disk rotates clockwise. If F2 were pulling 
to the left, then a counterclockwise torque would be produced and the 
disk would rotate counterclockwise. The two directions correspond to 
the two directional possibilities for the vector resulting from a vector 
product.

Figure 1.31 shows a force F applied to the rim of a disk at an arbi-
trary location. The displacement vector from the axle of the disk to the 

point where F is attached is indicated as r, and r makes an angle θ 
with the horizontal. The torque caused by a force depends on three 
variables: the strength of the force, the direction of the force, and the  
distance the force is applied from the center of rotation (the axle in 
this case). You probably can guess from your own experience that a 
force applied farther from the center of rotation produces a larger 
torque. This is why a multi-speed bicycle is easier to pedal if the chain 
is on the larger gear on the back sprocket than when it is on a smaller 
gear. It is also why a large steering wheel on a car or truck is easier to 
turn than a small steering wheel.

The torque, τ, produced by a force, F, is given by the equation

τ = r × F

where r is the displacement vector from the center of rotation to the 
point where the force is applied to the rotating object. The symbol for 
the torque variable, τ, is the lower-case Greek letter tau, the t in the 
Greek alphabet. The angle used to compute this vector product is the 
angle between the lines the vectors are pointing along. In Figure 1.30, 
this is the angle between the dashed line and F.

According to Equation (1.2), the magnitude of a torque is

τ = rF sinθ

The direction of a torque is considered mathematically to lie along the axis of rotation. The direc-
tion it points is given by the right-hand rule, as illustrated in the following example.

 Example 1.5

Referring to back Figure 1.31, determine the torque produced by a force of 125 N if the radius of 
the disk is 6.25 cm and the angle is θ = 55.0°.

Converting the disk radius to MKS units, we have:

F2

F1

Figure 1.30. Force F2 tends to 
cause the disk to rotate; force F1 
does not.

F

r θ

θ

Figure 1.31. Force F applied 
at a location described by 
displacement vector, r.

Figure 1.29. The cross 
product of B × A points in 
the opposite direction from 
that of A × B.

AB

B × A
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Connections in Physics	 Vector Fields

Just as with velocities and forces, fields can be vector constructs. Gravitational fields, 
electric fields, and magnetic fields are all examples of vector fields. The effect of a field is to 
produce a force on certain types of objects. An electric field, for example, produces a force 
on any charged particle located in the field, and a gravitational field obviously exerts a force 
on a mass located in the field.

A vector field has a strength (magnitude) and direction at each point in space. These are 
represented by field lines—arrows—that indicate the direction of the field with arrowheads 
and the strength of the field by the spacing of the field lines. The closer the field lines are 
together, the stronger the field is.

In a vector field, the force produced 
by the field is proportional to the strength 
of the field. In the diagram to the left, 
the black arrows are the field lines rep-
resenting the gravitational field around 
the earth. Any object possessing mass 
in earth’s gravitational field experiences 
a force directed toward the center of the 
earth.

Two objects are shown in the gravita-
tional field, the moon and a meteor. The 
moon is in orbit, so its velocity vector 
points along its orbital path. The gravita-
tional force the earth exerts on the moon 
is at right angles to the moon’s velocity.

The meteor is shown entering the 
earth’s gravitational field at an arbitrary 

angle. At any moment, its velocity also points in the direction it is moving, and the gravita-
tional force on the meteor is directed toward the earth, just like the field lines.

You probably know that magnetic fields exert forces on ferrous materials and other 
magnets. As we will study much later, magnetic fields also exert forces on moving charges. 

This is the only example we will study where the 
force exerted by a field is velocity-dependent. In 
fact, the force generated on a moving charge can 
be calculated using the cross product discussed 
in this chapter. The strength of a magnetic field 
is represented by the vector B and the amount 
of charge present on a charged object (such as a 
proton) is denoted as the scalar q. The force on a 
moving charge in a magnetic field is

F = q(v × B)

I will leave it to you to use the right-hand rule 
to determine the direction of F in the figure and 

leave the answer for the exercises at the end of the chapter. After the cross product v × B is 
calculated, the resulting vector must be multiplied by the scalar q to determine the force.

F

v
moon

F

v

meteor

v

proton

B
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F = 125 N

r = 6.25 cm ⋅ 1 m
100 cm

= 0.0625 m

θ = 55.0°

From Equation (1.2), the magnitude of the torque is

τ = rF sinθ = (0.0625 m) ∙ (125 N) ∙ sin55.0° = 6.40 m ∙N

To determine the direction of the torque from the right-hand rule, you need 
to imagine sliding the displacement vector r along the direction it points (the 
dashed line) until the tails of r and F are at the same spot, as illustrated in 
Figure 1.32. Then use your mental right hand to cross r into F to obtain the 
direction of the torque vector τ. (When first learning how to use the right-hand 
rule, it is wise to use your physical right hand as well, literally holding it up in 
the air and making the motions illustrated in Figure 1.28.) With the direction 
of τ determined, we can finally depict all three vectors in their proper places 
as shown in Figure 1.33.

 As shown in Example 1.5, the units for torque are meter-newtons (m∙N, 
pronounced “meter newtons”). Although the units for torque are mathemati-
cally equivalent to the units for work (N∙m, or J, see Example 1.4), you must re-
member that we are using these units of measure to model the physical world, 
and in the world, m∙N and N∙m have entirely different physical interpreta-
tions. Work is a scalar; torque is a vector. So when we speak of these units, we 
are careful about the order in which the meters and newtons are spoken or written. The correct 
order for the units is indicated by the standard ways of writing the formulas for work and torque. 
In the work equation, the order is force before displacement and the unit is newton-meter; in the 
torque equation the order is displacement before force and the unit is meter-newton. The same 
care about order applies when torque is specified in the common USCS units of inch-pounds or 
foot-pounds. For torques, the length unit is written first.

Chapter 1 Exercises

For all exercises, note that physical constants and unit conversion factors are found in Appendix 
A and inside the rear cover.
SECTION 1.1
1.	 Explain why measurement is such a central concern in science.

2.	 Distinguish between matter, inertia, and mass.

3.	 Compare volume and mass.

τ
r

F

Figure 1.32. Mentally 
place the tails of r 
and F together to 
cross r into F.

τ
r

F

Figure 1.33. A 3-D 
view of r, F, and τ.
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4.	 Perform the following unit conversions using all prefixes and their conversion factors from 
memory. (Note: If you have not yet mastered the execution of unit conversions, you will find 
a tutorial on the subject in Appendix B.)

Convert This Quantity Into These Units Convert This Quantity Into These Units
a.	 35.4 mm m b.	 76.991 mL μL
c.	 34.44 cm3 L d.	 6.33 g/cm2 kg/m2

e.	 9.35 m/s2 mm/ms2 f.	 542.2 mJ/s J/s
g.	 56.6 μs ms h.	 44.19 mL cm3

i.	 532 nm μm j.	 96,963,000 mL/ms m3/s
k.	 295.6 cL μL l.	 0.007873 m3 mL
m.	8,750 mm2 m2 n.	 87.1 cm/s2 m/s2

o.	 15.75 kg/m3 g/cm3 p.	 0.875 km m
q.	 16,056 MPa kPa r.	 7,845 μA mA

5.	 Distinguish between base and derived units.

6.	 Describe the origin of the SI system of units.
SECTION 1.2
7.	 Describe the effect of uncertainty on scientific measurements.

8.	 Write a paragraph distinguishing between accuracy and precision.

9.	 Distinguish between random error and systematic error.

10.	Explain the meaning of the standard deviation of a data set and how the standard deviation 
relates to uncertainty in measurements.

SECTION 1.3
11.	Explain why scientists should avoid terms such as “proven” and “true” when describing sci-

entific knowledge.

12.	Describe the ways we apprehend truth, and contrast these to the processes and goals of sci-
entific inquiry.

13.	Explain the difference between truth and facts.

14.	Describe the role of theories in scientific research.

15.	I once read the statement, “No theory is true until it is proven.” Use our discussion of the 
nature and role of theories and scientific knowledge to respond to this claim.

SECTION 1.4
Solve problems 16–19 using graphical methods.

16.	A Boy Scout must go on a hike of 33 km to qualify for the hiking merit badge. For his hike, 
the boy decides to walk to a friend’s house as follows: due east from his house for 9.5 km, 
then due southeast for 7.1 km. From there he will return home. What is the magnitude and 
direction of the displacement vector from the Scout’s house to his friend’s house?

17.	Determine the resultant vector from the sum of the following three displacements: 
d1	  d1 = 10.5 cm, θ1 = –47° 
d2	  d2 = 8.2 cm, θ2 = –110° 
d3	  d3 = 10.5 cm, θ3 = 116°
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18.	Add the following vectors and determine the magnitude and direction of the resultant: 
F1	  F1 = 66.4 N, θ1 = 37.5° 
F2	  F2 = 59.8 N, θ2 = –122° 
F3	  F3 = 35.1 N, θ3 = 131.5°

19.	The ground velocity of an airplane is the speed and direction of the plane relative to the 
ground. The pilot maintains a certain air speed, which is the speed of the plane relative to the 
air, but if there is wind, the velocity of the wind must be taken into account to determine the 
plane’s ground velocity. The ground velocity is calculated as the vector sum of the velocity of 
the wind and the plane’s air speed and direction. A plane flies with an air speed of 275 km/hr 
at a bearing of 276°. The wind velocity is 45 km/hr at a bearing of 185°. Determine the plane’s 
ground velocity. (Note: The term bearing is used in navigation to indicate an angle measured 
clockwise from due north.)

20.	Compute the following. (The units in the third problem are fabrications; they have no actual 
physical meaning.)

a.	 p = m ∙v, where m = 4.31 × 10–26 kg, v = 2.994 × 106 m/s, and θv = 23°

b.	 F = q ∙E, where q = –2.25 × 10–6 C, E = 19.95 V/m, and θE = 161°

c.	 R = n ∙s, where n = –15.5 xg, s = 57.9 jd, and θs = –135°

21.	Determine the magnitude of the vector represented by the following pairs of components:

a.	 v1, where v1x = 25 m/s, v1y = 14 m/s

b.	 vf, where vfx = –24.765 cm/s, vfy = –67.001 cm/s

c.	 d, where dx = 1.00 × 10–3 cm, dy = –6.77 × 10–4 cm

d.	 F1, where F1x = –355 N, F1y = 865 N

e.	 a, where ax = –2.124 m/s2, ay = 3.910 m/s2

f.	 E, where Ex = –0.0091 V/m, Ey = –0.0104 V/m

22.	Determine the direction of the vector represented by each of the pairs of components in the 
previous item.

23.	Add the following vectors and determine the magnitude and direction of the resultant: 
v1:	  v1 = 45.6 cm/s, θ1 = 123° 
v2:	  v2 = 98.1 cm/s, θ2 = 16.1°

24.	Add the following vectors and determine the magnitude and direction of the resultant: 
a1:	  a1 = 45.0 m/s2, θ1 = 90.0° 
a2:	  a2 = 100.7 m/s2, θ2 = 235°

25.	To travel from Austin, Texas to Atlanta, Georgia a plane must fly 1,319 km at a bearing of 
69.5°. To travel from St. Louis to Atlanta a plane must fly 753 km at a bearing of 134.0°. De-
termine the distance and bearing a plane must fly to travel from Austin to St. Louis. (Recall, 
the term bearing is used in navigation to indicate an angle measured clockwise from due 
north.)

26.	An automated drilling tool begins its operation with the drill bit at the origin of a coordi-
nate system. We will call the origin Point #1. After drilling a hole there, the drill undergoes 
a displacement of 13.00 cm,  75.00° to arrive at Point #2. After drilling there, the drill 
undergoes a second displacement of 17.00 cm,  225.00° to arrive at Point #3. After drill-
ing there, the drill undergoes a third displacement of 4.50 cm,  0.00° to arrive at Point #4. 
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Determine where Point #4 is relative to the starting point (i.e., the displacement vector from 
the origin to Point #4).

27.	Electrical forces are present on an electron, as shown 
in Figure 1.34. Determine the resultant vector from the 
sum of these three forces.

28.	Add the following vectors and determine the magni-
tude and direction of the resultant: 
F1	 F1 = 72.1 N, θ1 = –117° 
F2	 F2 = 73.0 N, θ2 = 46.4° 
F3	 F3 = 84.2 N, θ3 = 141°

29.	Add the following vectors and determine the magni-
tude and direction of the resultant: 
F1	 F1 = 2,450 N, θ1 = 25.0° 
F2	 F2 = 1,965 N, θ2 =–13.5° 
F3	 F3 = 1,370 N, θ3 = 175.1° 
F4	 F4 = 2,009 N, θ4 =–101.5°

SECTION 1.4.7
30.	Determine the following scalar products:

a.	 A∙B, where A = 14.6 N, θA = 0.00°, B = 16.0 m, θB = 52.8°

b.	 W = F∙d, where F = 9.21 × 104 N, θF = –167°, d = 4.021 × 10–5 m, θd = –31.1°

c.	 U = –p∙E, where p = 0.0258 m∙C, θp = 150.7°, E = 6.02 × 104 N/C, θE = –119.0°

31.	Determine the following vector products. In each case, specify the direction of the product 
as pointing into the page or pointing out of the page.

a.	 A×B, where A = 53.2 m, θA = 25.1°, B = 16.0 N, θB = –48.2°

b.	 B×A, where A = 53.2 m, θA = 25.1°, B = 16.0 N, θB = –48.2°

c.	 τ = r×F, where r = 0.0234 m, θr = 225°, F = 6.18 × 10–5 N, θF = 122°

d.	 τ = p×E, where p = 1.75 × 10–3 m∙C, θp = 11.9°, E = 4.96 × 105 N/C, θE = –215.6°

32.	For the magnetic field example discussed at the bottom of page 33, assume v = 750 m/s, 
 –55° and B = 0.15 T,  22°. Determine F for a proton and for an electron. (The unit for B 

is the tesla [T] and the unit for q is the coulomb [C], but these are both MKS units.)

1.2 × 10–6 N

3.2 × 10–6 N

3.4 × 10–6 N

59° 67°

Figure 1.34. Vectors for exercise 27.
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Uniform Motion

A stream of water follows a parabolic path, illustrating projectile motion. In this chapter we will 
explore a simple model of this type of motion and apply the methods of vector analysis to the 
solution of various problems.
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Objectives for Chapter 2

After studying this chapter and completing the exercises, you should be able to do each of the 
following tasks, using supporting terms and principles as necessary.
SECTION 2.1
1.	 Define physics.
SECTION 2.2
2.	 Define kinematics, dynamics, and rectilinear motion.

3.	 Define uniform motion, velocity, and acceleration in words.

4.	 Define average velocity and uniform acceleration with equations.

5.	 Calculate average velocity and uniform acceleration using the definitions of these terms.

6.	 Interpret graphs of displacement vs. time and velocity vs. time, including composite graphs 
representing several separate intervals of uniform motion.

7.	 Use proper problem-solving methods.

8.	 Use the equations of kinematics to solve vector problems in one dimension (rectilinear mo-
tion).

SECTION 2.3
9.	 Define projectile motion.

10.	Describe the assumptions implicit in solving typical problems in projectile motion.

11.	Use vector analysis and the kinematics equations from memory to solve projectile motion 
problems

SECTION 2.4
12.	Define relative motion.

13.	Draw diagrams showing the resultant of two vectors and the resolution of a vector into rect-
angular components.

14.	Use vector analysis and other trigonometric principles to solve relative velocity problems.
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2.1	 How Physics Is Organized

Physics is usually described as the study of matter and energy and their interactions. In this 
study, we constantly encounter ideas that are fascinating, mystifying, stupefying, or all of the 
above, and this is why folks like me simply can’t get enough of this wonderful subject.

The study of physics is often subdivided into several major branches. These include mechan-
ics, electricity and magnetism, thermodynamics, and quantum mechanics. Beginning with this 
chapter, the next few chapters in this text all focus on the principles and problems in mechanics. 
The study of mechanics always begins with the topic of motion. After that we will take up the 
topic of energy before returning to motion again to address some of the more advanced con-
cepts.

2.2	 Rectilinear Motion

2.2.1 The Terminology of Motion
The study of motion can be subdivided into kinematics and dynamics. Kinematics is the 

subject of this chapter; dynamics is the subject of Chapter 3. Kinematics is the study of motion 
purely from the definitions of velocity and acceleration, without regard to the forces causing the 
acceleration. In dynamics, we study motion from the standpoint of the forces involved and the 
accelerations that result. Together, kinematics and dynamics are part of the more general subject 
known as mechanics.

The simplest form of motion is motion in a straight line, or movement in one dimension. 
This subject is called rectilinear motion and is our first topic in this chapter. After mastering 
problems in one dimension, we will be ready for motion in two dimensions, which includes 
projectile motion. That’s when things start to get really interesting (and the problems start to get 
more challenging).

As it happens, if we start with just a few equations defining velocity and acceleration we can 
derive a set of equations we can use to calculate any time, displacement, velocity, or acceleration 
associated with an object undergoing uniform acceleration.

2.2.2 Coordinate Systems
For all problem solving in mechanics, we choose a convenient coordinate system for a given 

problem and define quantities in terms of this coordinate system. To be consistent, once a spe-
cific direction is identified as the positive direction, all the variables in the problem are positive 
in the same direction. For problems involving motion in two dimensions, the usual coordinate 
system to use is the standard x-y system, with the positive x-axis pointing to the right and the 
positive y-axis pointing up. However, there are times when it is more convenient to choose a 
different coordinate system. I will frequently comment on the coordinate system I am using for 
a given example.

2.2.3 Velocity and Acceleration
Figure 2.1 shows a graph of displacement vs. time for an object moving at a constant velocity, 

which means a constant speed in a straight line. As you see, the curves on this graph are straight 
lines representing specific velocities. Velocity is defined as an object’s change in displacement 
per interval of time, or

v = Δd
Δt

=
d f −di

t f − ti 				  
(2.1)
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The subscripts f and i indicate vari-
able values at the end of the interval 
(f, or final) and at the beginning of 
the interval (i, or initial). Since we 
are working in one dimension, we 
can also use the variable x to repre-
sent the object’s position. In this case 
Equation (2.1) would be written

v = Δx
Δt

=
x f − xi

t f − ti

This expression makes it clear that 
the velocity of an object is equal to 
the slope of the line on the displace-
ment vs. time graph representing its motion. As indicated in the center of the graph in the figure, 
if an object travels from d = 4 m to d = 6 m in the time interval from t = 1 s to t = 1.5 s, the slope 
of the line represents a velocity of

v = Δd
Δt

= 6 m− 4 m
1.5 s−1 s

= 2 m
0.5 s

= 4 m
s

Steeper curves on the graph indicate higher velocities. A horizontal line on this graph represents 
an object at the same position at all times, which means the object is at rest (v = 0).

Again, we are presently discussing motion in one dimension. You should think in terms of 
an object moving on a horizontal track marked off like a number line, with positive positions 
right of zero and negative positions 
left of zero. Even in one dimension, 
the directional nature of the dis-
placement and velocity vectors is rel-
evant: displacement can be positive 
or negative because an object can be 
on either side of zero. Velocity can be 
either positive or negative because 
an object can be moving in a positive 
direction (its position is getting more 
and more positive) or in a negative 
direction (its position is getting more 
and more negative).

Figure 2.2 again shows a graph of 
displacement vs. time, this time with 
three different curves on the graph. 
The curves have different slopes rep-
resenting three different velocities, 
two of which are negative. Four loca-
tions are marked on the curves; each 
of these locations represents an ob-
ject at a specific position moving in a 
specific direction at a specific speed. 

Figure 2.1. The velocity of an object moving at constant velocity is 
the slope of the line on a graph of displacement vs. time. 
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Note that the curve containing points A and B does not represent an object “going up,” and the 
other two curves containing points C and D do not represent objects “going down.”

What the curves do represent is illustrated by the four objects on the number line at the 
bottom of the figure. On the number line, the velocity of each object is labeled—each object is 
moving at a specific speed, and each object is moving in a positive direction (to the right) or a 
negative direction (to the left), as indicated by both the sign on the velocity value and the direc-
tion shown by the red arrow. As one illustration, point D in the graph represents an object at the 
position x = –4 m moving to the left at a velocity of v = –4 m/s.

So far in this section, we have only discussed objects moving with constant velocity. How-
ever, if you have studied Newton’s Laws of Motion before, you know that when a net force is 
present on an object the object will not move at a constant velocity but will instead accelerate. 
When an object is accelerating, its velocity is changing. In this chapter, we are considering uni-
form motion, which means one of two things is going on:

1.	 An object is moving in a straight line at a constant speed, which means that the velocity is 
constant and the object is not accelerating (the case considered in Figures 2.1 and 2.2).

2.	 An object is accelerating uniformly, which means its velocity is changing at a constant rate 
in a certain direction.1

Figure 2.3 shows three different 
curves representing velocity vs. time 
for an object accelerating uniformly. 
When acceleration is uniform, the ve-
locity changes by the same amount in 
any equal interval of time. As you see, 
straight lines on this graph represent 
specific accelerations. Again, noth-
ing on this graph represents anything 
moving up or down; the curves on 
the graph represent objects speeding 
up or slowing down at different rates. 
The steeper an upward slope, the 
faster an object’s velocity is increas-
ing. The steeper a negative slope, the 

faster an object is slowing down. A horizontal line on this graph represents an object moving at 
a constant speed.

Acceleration is defined as the change in velocity per interval of time, or

a = Δv
Δt

=
v f −vi
t f − ti 				  

(2.2)

As indicated in the center of the graph, if an object’s velocity changes from 10 m/s to 15 m/s in 
the time interval from t = 2 s to t = 3 s, the slope of the line represents an acceleration of

a = Δv
Δt

=
15 m

s
−10 m

s
3 s− 2 s

=
5 m

s
1 s

= 5 m
s2

1	 Rotating objects can also accelerate uniformly, but we will not consider rotation until Chapter 7.

Figure 2.3. The acceleration of an object accelerating uniformly is 
the slope of the line on a graph of velocity vs. time. 
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You do not need to be taking calculus to use this text; none of the mathematics required for 
solving the problems goes beyond standard topics in precalculus. However, many—if not 
most—of the students who take physics as high school seniors take calculus concurrently. 
This opens up the possibility for some enriching connections to be made between the phys-
ics and calculus-based math. So for the value of those who are taking calculus, these blue 
boxes will point out some important connections.

Connections to Calculus	 Derivatives

By limiting the discussion in this chapter to uniform acceleration—the linear variation 
of velocity—we are able to define velocity and acceleration as shown in Equations (2.1) and 
(2.2). In the more general case, acceleration does not have to be uniform; the acceleration 
of a moving object may be defined by any continuous function of time.

By evaluating the limit of Δx/Δt as Δt goes to zero, we arrive at the rate of change of x, 
the time derivative of x for any continuous position function: 

lim
Δt→0

Δx
Δt

⎛
⎝⎜

⎞
⎠⎟ =

dx
dt

But the rate of change of x is simply the object’s velocity, so

v = dx
dt

Evaluating the derivative at a specific time gives the instantaneous velocity at that time. 
Likewise, we can evaluate the limit of Δv/Δt as Δt goes to zero, the time derivative of v:

lim
Δt→0

Δv
Δt

⎛
⎝⎜

⎞
⎠⎟ =

dv
dt

But the rate of change of v is simply the object’s acceleration, so 

a = dv
dt

Consider the case where the position of an object varies quadratically. Using k1, k2, and 
k3 as coefficients, the generic quadratic function is x = k1t

2 + k2t + k3. The velocity function 
is then v = dx/dt = 2k1t + k2, which is a linear function. The acceleration is a = dv/dt = 2k1, 
which is a constant. This is the case of uniform acceleration which we are considering in 
this chapter. Since a = 2k1, the coefficient k1 is equal to a/2. Inserting this into the equation 
for v, we have v = (a/2)t + k2. But this is a linear function with an initial value (the value 
at t = 0) of k2. Thus, k2 is the initial velocity of the object, which we denote as vi or v0. The 
constant k3 turns out to be the initial position of the object, which we denote as xi or x0. 
Replacing the generic k coefficients with these values, we have

x = 1
2at

2 +v0t + x0

As we will see in Section 2.2.4, if we set the position at t = 0 to be x = 0, then k3 = 0 and the 
position function becomes

x = 1
2at

2 +v0t




