## Correlation to Current Math Standards

| Standard | Activity No. |
| :--- | :--- |
| Grade 2 | Measurement and Data (2.MD) |
| Measure the length of an object by selecting and using appropriate tools such as rulers, <br> yardsticks, meter sticks, and measuring tapes. (2.MD.A.1) | $2-5,2-6$ |
| Measure the length of an object twice, using length units of different lengths for the two <br> measurements; describe how the two measurements relate to the size of the unit chosen <br> (2.MD.A.2) | $2-7,2-8$ |
| Estimate lengths using units of inches, feet, centimeters, and meters. (2.MD.A.3) | $2-1,2-2$ |
| Measure to determine how much longer one object is than another, expressing the length <br> difference in terms of a standard length unit. (2.MD.A.4) | $2-3,2-4$ |
| Use addition and subtraction within 100 to solve word problems involving lengths that are <br> given in the same units, e.g., by using drawings (such as drawings of rulers) and equations <br> with a symbol for the unknown number to represent the problem. (2.MD.B.5) | $2-9,2-10$ |
| Represent whole numbers as lengths from 0 on a number line diagram ... and represent <br> whole-number sums and differences within 100 on a number line diagram. (2.MD.B.6) | $2-11,2-12$ |
| Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. <br> and p.m. (2.MD.C.7) | $2-13,2-14$ |
| Generate measurement data by measuring lengths of several objects to the nearest whole <br> unit, or by making repeated measurements of the same object. Show the measurements <br> by making a line plot, where the horizontal scale is marked off in whole-number units. <br> (2.MD.D.9) | $2-15,2-16$ |
| Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with <br> up to four categories. Solve simple put-together, take-apart, and compare problems using <br> information presented in a bar graph. (2.MD.D.10) | $2-17,2-18$ |
| Grade 3 | $3-1,3-2,3-3$ |
| Measurement and Data (3.MD) | Tell and write time to the nearest minute and measure time intervals in minutes. Solve <br> word problems involving addition and subtraction of time intervals in minutes, e.g., by <br> representing the problem on a number line diagram. (3.MD.A.1) |

## Correlation to Current Math Standards (cont.)

| Grade 3 |  |
| :---: | :---: |
| Measurement and Data (3.MD) |  |
| Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (3.MD.A.2) | 3-4 |
| Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs.(3.MD.B.3) | 3-5 |
| Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters. (3.MD.B.4) | 3-6 |
| Recognize area as an attribute of plane figures and understand concepts of area measurement. (3.MD.C.5) | 3-7 |
| A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. (3.MD.C.5.A) | 3-8, 3-9 |
| A plane figure which can be covered without gaps or overlaps by $n$ unit squares is said to have an area of $n$ square units. (3.MD.C.5.B) | 3-10, 3-11 |
| Measure areas by counting unit squares (square cm , square m , square in., square ft , and improvised units). (3.MD.C.6) | $\begin{aligned} & 3-7,3-8,3-9 \\ & 3-10,3-11 \end{aligned}$ |
| Relate area to the operations of multiplication and addition. (3.MD.C.7) | 3-13, 3-14 |
| Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. (3.MD.C.7.A) | 3-15 |
| Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. (3.MD.C.7.B) | 3-16 |
| Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths $a$ and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. (3.MD.C.7.C) | 3-17, 3-18 |
| Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems. (3.MD.C.7.D) | 3-12, 3-19, 3-20 |
| Solve real-world and mathematical problems involving perimeters of polygons, including . . . rectangles with the same perimeter and different areas or with the same area and different perimeters. (3.MD.C.8) | 3-21 |

