Use the drawing to fill in the blanks.

1. $\angle \mathrm{AHC}$ is adjacent to \angle \qquad and \angle \qquad .
2. $\angle \mathrm{BHD}$ is adjacent to \angle \qquad and \angle \qquad .
3. \angle FHB and \angle \qquad are vertical angles.
4. $\angle \mathrm{FHC}$ and \angle \qquad are vertical angles.
5. $\angle \mathrm{LFJ}$ and \angle \qquad are supplementary angles.
6. $\angle \mathrm{FHC}$ and \angle \qquad are complementary angles.
7. $\angle \mathrm{JFH}$ and \angle \qquad are supplementary angles.
8. $\angle B H D$ and \angle \qquad are complementary angles.

Given: $\overleftrightarrow{A B}, \overleftrightarrow{C D}, \overleftrightarrow{L G}$, and $\overleftrightarrow{J K}$ are straight lines. $\mathrm{m} \angle \mathrm{FHB}=90^{\circ}$.

The drawing is a sketch and not necessarily to scale. Don't make any assumptions about the lines and angles other than what is actually given.
9. If $\mathrm{m} \angle \mathrm{CHA}=40^{\circ}$, then $\mathrm{m} \angle \mathrm{BHD}=$ \qquad .

Use the drawing from the previous page to fill in the blanks.
10. If $\mathrm{m} \angle \mathrm{JFL}=65^{\circ}$, then $\mathrm{m} \angle \mathrm{KFH}=$ \qquad .
11. If $\mathrm{m} \angle \mathrm{FHB}=90^{\circ}$, then $\mathrm{m} \angle \mathrm{FHA}=$ \qquad .
12. If $\mathrm{m} \angle \mathrm{CHA}=40^{\circ}$, then $\mathrm{m} \angle \mathrm{FHC}=$ \qquad .
13. If $\mathrm{m} \angle \mathrm{LFJ}=65^{\circ}$, then $\mathrm{m} \angle \mathrm{LFK}=$ \qquad .
14. If $\mathrm{m} \angle \mathrm{FHB}=90^{\circ}$, then $\mathrm{m} \angle \mathrm{AHG}=$ \qquad .

Use the letters to match each term to the best answer.
\qquad
15. β
16. adjacent angles \qquad b. alpha
17. supplementary angles \qquad c. always have the same measure
18. α \qquad
d. add up to 90°
19. complementary angles \qquad e. add up to 180°
20. vertical angles \qquad f. beta

LESSON PRACTICE

Use the drawing to fill in the blanks.

1. $\angle \mathrm{MNS}$ is adjacent to \angle and \angle \qquad .
2. $\angle \mathrm{QNT}$ is adjacent to \angle \qquad and \angle \qquad .
3. $\angle \mathrm{SRN}$ and \angle \qquad are vertical angles.
4. $\angle \mathrm{MNS}$ and \angle \qquad
are vertical angles.
5. $\angle \mathrm{QNP}$ and \angle \qquad
are supplementary angles.
6. $\angle \mathrm{QNT}$ and \angle \qquad are complementary angles.
7. $\angle N R Z$ and \angle \qquad
are supplementary angles.
8. $\angle \mathrm{MNS}$ and \angle \qquad are complementary angles.

The drawing is a sketch and not necessarily to scale. Do not make any assumptions about the lines and angles other than what is actually given.

Given: All lines that appear to be straight lines are straight lines. $\mathrm{m} \angle \mathrm{QNP}=90^{\circ}$.

Use the drawing from the previous page to fill in the blanks.
9. If $\mathrm{m} \angle \mathrm{MNS}=35^{\circ}$, then $\mathrm{m} \angle \mathrm{SNR}=$ \qquad .
10. If $\mathrm{m} \angle \mathrm{MNS}=35^{\circ}$, then $\mathrm{m} \angle \mathrm{TNP}=$ \qquad .
11. If $\mathrm{m} \angle \mathrm{QNP}=90^{\circ}$, then $\mathrm{m} \angle \mathrm{PNR}=$ \qquad .
12. If $\mathrm{m} \angle \mathrm{MSN}=95^{\circ}$, then $\mathrm{m} \angle \mathrm{NSR}=$ \qquad .
13. If $\mathrm{m} \angle \mathrm{SRN}=40^{\circ}$, then $\mathrm{m} \angle \mathrm{YRZ}=$ \qquad .
14. If $\mathrm{m} \angle \mathrm{XNY}=55^{\circ}$, then $\mathrm{m} \angle \mathrm{QNT}=$ \qquad .

Fill in the blanks with the correct terms.
15. The name of the Greek letter α is \qquad .
16. Two angles whose measures add up to 90° are called \qquad .
17. Two angles whose measures add up to 180° are called \qquad .
18. The name of the Greek letter γ is \qquad -
19. Intersecting lines form two pairs of \qquad angles.
20. The name of the Greek letter δ is \qquad .

SYSTEMATIC REVIEW

Use the drawing to fill in the blanks.

1. $\angle 1$ is adjacent to \angle \qquad and \angle \qquad .
2. $\angle 1$ and \angle \qquad are vertical angles.
3. $\angle A F E$ and \angle \qquad are vertical angles.
4. \angle \qquad is a straight angle.
5. \angle \qquad is an obtuse angle.
6. $\angle 2$ and \angle \qquad are complementary angles.

From now on, we will assume lines that look straight to be straight lines. Do not make any assumptions about the size of the angles.
7. If $\mathrm{m} \angle 2=50^{\circ}$, then $\mathrm{m} \angle 1=$ \qquad Why?
8. If $\mathrm{m} \angle 2=50^{\circ}$, then $\mathrm{m} \angle 4=$ \qquad Why?
9. $\angle 5$ and \angle \qquad are supplementary angles.
10. If $\mathrm{m} \angle 4=40^{\circ}$, then $\mathrm{m} \angle 5=$ \qquad Why?
11. Name two acute angles.
12. Name two right angles.

Follow the directions.
13. Draw a line segment $1 \frac{1}{2}$ inches long. Then draw its perpendicular bisector using compass and straightedge.
14. Draw a 52° angle and bisect it.

Fill in the blanks with the correct terms.
15. Two lines forming a right angle are said to be \qquad to each other.
16. A right angle has a measure of \qquad ${ }^{\circ}$.
17. A straight angle has a measure of \qquad ${ }^{\circ}$.
18. The measures of two complementary angles add up to \qquad ${ }^{\circ}$.
19. The measures of two supplementary angles add up to \qquad ${ }^{\circ}$.
20. The intersection of two sets with no elements in common is the
\qquad set.

SYSTEMATIC REVIEW

Use the drawing to tell if each statement is true or false.

1. $\angle 2$ and $\angle 5$ are vertical angles.
2. If $\overleftrightarrow{F H} \perp \overleftrightarrow{D K}$, then $\angle 2$ and $\angle 3$ are supplementary.
3. $\angle 3$ and $\angle 4$ are adjacent angles.
4. $\angle F G K$ is known to be a right angle.
5. $\overrightarrow{G J}$ is the common side for $\angle J G K$ and $\angle K G F$.

Given:
$\overleftrightarrow{D K}, \overleftrightarrow{E}$, and $\overleftrightarrow{F H}$ intersect at G.
Lines that look straight are
6. $\angle 2, \angle 3$, and $\angle 5$ appear to be acute. straight. Do not make any other assumptions.

Use the drawing to fill in the blanks.
7. If $\mathrm{m} \angle 3=39^{\circ}$, then $\mathrm{m} \angle 6=$ \qquad Why?
8. If $\overleftrightarrow{\mathrm{FH}} \perp \overleftrightarrow{\mathrm{DK}}$ and $\mathrm{m} \angle 3=39^{\circ}$, then $\mathrm{m} \angle 2=$ \qquad Why?
9. If $\overleftrightarrow{F H} \perp \overleftrightarrow{D K}$, then $m \angle 1$ and $m \angle 4$ are each \qquad Why?
10. If $\mathrm{m} \angle 1$ is 90°, then it is $\mathrm{a}(\mathrm{n})$ \qquad angle.
11. If the measures of $\angle 4$ and $\angle 1$ add up to 180°, they are called \qquad angles.
12. $m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5+m \angle 6=$ \qquad ${ }^{\circ}$.

Use the letters to match each description to the correct term.
13. Greek letter beta \qquad
14. less than 90° \qquad
15. measures add up to 90° \qquad
a. $\quad \alpha$
b. complementary
c. δ
d. obtuse
e. acute
f. β
g. γ
h. supplementary
20. Greek letter delta \qquad

SYSTEMATIC REVIEW

Use the drawing to fill in the blanks or answer the questions.

1. Name a line containing $\overrightarrow{R V}$.
2. Name a line segment contained in RT.
3. If all eight angles were congruent, rather than as given, what would the measure of each be?
4. Since $m \angle 1$ is 90°, what is $m \angle 2+m \angle 3+m \angle 4$?
5. $\angle 4+\angle 5$ is $a(n)$ \qquad angle. is a sketch.
6. Are $\angle 1$ and $\angle 5$ supplementary?
7. Are $\angle 1$ and $\angle 5$ complementary?

Given: $\overleftrightarrow{S W} \perp \overleftrightarrow{Q V}$
All four straight lines intersect at R.

Remember the drawing

Use the measurements given in the questions, even if the drawing appears to be different.
8. Are $\angle 1$ and $\angle 5$ vertical angles?
9. If $\angle 2 \cong \angle 3 \cong \angle 4$, then $\mathrm{m} \angle 8=$ \qquad ${ }^{\circ}$.
10. $\angle 6 \cong \angle$ \qquad .
11. $\angle 2$ and $\angle 3$ are \qquad angles (size).
12. If $\mathrm{m} \angle 2=25^{\circ}$, and $\mathrm{m} \angle 4=35^{\circ}$, then $\mathrm{m} \angle 3=$ \qquad .
13. If $\mathrm{m} \angle 2=25^{\circ}$, and $\mathrm{m} \angle 4=35^{\circ}$, then $\mathrm{m} \angle \mathrm{YRX}=$ \qquad .
14. Which ray is the common side for $\angle S R Q$ and $\angle Q R X$?
15. Draw the perpendicular bisector of the given line segment.

A• \longrightarrow B

16. Draw a ray that bisects the given angle.

0 Sharpen your algebra skills!
Be very careful when squaring negative numbers.
EXAMPLE $1 \quad(-5)^{2}=(-5)(-5)=+25$
EXAMPLE $2 \quad-(8)^{2}=-(8)(8)=-64$
EXAMPLE $3 \quad-6^{2}=-(6)(6)=-36$
17. $(-7)^{2}=$
18. $-(15)^{2}=$
19. $-12^{2}=$
20. $-(9)^{2}=$

HONORS LESSON

Here are some more figures you may use to practice your bisection skills.

1. Draw the perpendicular bisectors of each line inside the square.

2. Using dotted lines or a different colored pencil, bisect each angle in the original square.
3. Draw the perpendicular bisectors of each side of the triangle. You have marked off two line segments on each side of the triangle. Now construct a perpendicular bisector for each of those line segments. What kinds of shapes do you see inside the large triangle?

4. If you wish, draw other shapes and construct bisectors as you did above. Try parallelograms, trapezoids, octagons, and other kinds of triangles for interesting results.

Read and follow the directions.

5. Lindsay's base pay is X dollars an hour. For every hour of overtime she works, she gets her base pay plus.5X. Last week she worked six hours of overtime. Let P be her total overtime pay for the week, and write an equation to find P.
6. Lindsay's base pay is $\$ 8$ an hour. Use the equation you wrote in $\# 9$ to find her total overtime pay for the week.

Circle your answer.

1. Two angles whose measures add up to 180° are called:
A. straight
B. complementary
C. acute
D. obtuse
E. supplementary
2. Vertical angles are:
A. supplementary
B. complementary
C. congruent
D. adjacent
E. obtuse
3. $\mathrm{m} \angle \mathrm{XYZ}=35^{\circ}$. What is the measure of its complement?
A. 145°
B. 55°
C. 35°
D. 65°
E. 125°
4. $\mathrm{m} \angle \mathrm{GEF}=40^{\circ}$. What is the measure of its supplement?
A. 60°
B. 50°
C. 140°
D. 320°
E. 40°
5. Angle A is 20° and angle B is 70°. What is their relationship?
A. supplementary
B. vertical
C. reflexive
D. coplanar
E. complementary

Use this diagram for \#6-10.

Given: $\overrightarrow{W T} \perp \overleftrightarrow{S V} ; \overleftrightarrow{\mathrm{RU}} \cap \overleftrightarrow{\mathrm{SV}}$ at W.
6. $\angle 1$ is adjacent to:
A. $\angle 1$
B. $\angle 2$ and $\angle 5$
C. $\angle 3$
D. $\angle 4$
E. $\angle 2$
7. The sum of $\mathrm{m} \angle 1$ and $\mathrm{m} \angle 2$ is:
A. 90°
B. 180°
C. 45°
D. 360°
E. can't tell from information given

Use this diagram for \#6-10.

Given: $\overrightarrow{W T} \perp \overleftrightarrow{S V} ; \overleftrightarrow{R U} \cap \overleftrightarrow{S V}$ at W.
8. The measure of $\angle U W V$ is:
A. 45°
B. 30°
C. 90°
D. 35°
E. can't tell from information given
9. $\angle 4$ and what other angle are vertical angles?
A. $\angle 3$
B. $\angle 4$
C. $\angle 2$
D. $\angle 1$
E. $\angle T W V$
10. $\angle S W T+\angle T W U+\angle U W V=$
A. 180°
B. 360°
C. 90°
D. 100°
E. can't tell from information given

Use this diagram for \#11-15.

Given: $\overleftrightarrow{F C}, \overleftrightarrow{A D}, \overleftrightarrow{B E}$ intersect at G.
A. if the quantity in column I is greater.
B. if the quantity in column II is greater.
C. if the two quantities are equal.
D. if the relationship cannot be determined from the information given.

Write the correct letter in the blank.

