

Chemistry for the Grammar Stage Sample Packet

The following sample packet includes the first two weeks of the *Chemistry for the Grammar Stage* materials. You will see:

- ✓ The Teacher Guide (*beginning on pg. 3*)
- ✓ The Student Workbook (*beginning on pg. 23*)
- ✓ The Lapbooking Templates (*beginning on pg. 37*)
- ✓ The Coloring Pages (*beginning on pg. 44*)

You do not need all of these to successfully complete this program. You can get more information and make your purchase here:

1 https://elementalscience.com/collections/chemistry-for-the-grammar-stage

elementalscience.com

THESE PRODUCTS ARE INTENDED FOR HOME USE ONLY

The images and all other content in this book are copyrighted material owned by Elemental Science, Inc. Please do not reproduce this content on e-mail lists or websites. If you have an eBook, you may print out as many copies as you need for use WITHIN YOUR IMMEDIATE FAMILY ONLY. Duplicating this book or printing the eBook so that the book can then be reused or resold is a violation of copyright.

Schools and co-ops: You MAY NOT DUPLICATE OR PRINT any portion of this book for use in the classroom. Please contact us for licensing options at support@elementalscience.com.

Chemistry for the Grammar Stage Table of Contents

Introduction		5
Required Book List	9	
Additional Books Listed by Week	9	
Supplies Needed by Week	14	
Atoms and Molecules Unit	••••••	
Atoms and Molecules Unit Overview	18	
Week 1: Atoms Lesson Plans	20	
Week 2: Molecules Lesson Plans	24	
Week 3: Air Lesson Plans	28	
Week 4: Water Lesson Plans	32	
Periodic Table Unit	••••••	
Periodic Table Unit Overview	38	
Week 1: Elements and the Periodic Table Lesson Plans	42	
Week 2: Alkali Metals Lesson Plans	46	
Week 3: Alkaline Earth Metals Lesson Plans	50	
Week 4: Transition Metals Lesson Plans	54	
Week 5: Boron Elements Lesson Plans	58	
Week 6: Carbon Elements Lesson Plans	62	
Week 7: Nitrogen Elements Lesson Plans	66	
Week 8: Oxygen Elements Lesson Plans	70	
Week 9: Halogens Lesson Plans	74	
Week 10: Noble Gas Lesson Plans	78	
Week 11: Lanthanides Lesson Plans	82	
Week 12: Actinides Lesson Plans	86	
Physical Changes Unit	••••••	
Physical Changes Unit Overview	92	
Week 1: States of Matter Lesson Plans	94	
Week 2: Changes in State Lesson Plans	98	
Week 3: Liquid Behavior Lesson Plans	102	
Week 4: Gas Behavior Lesson Plans	106	

Chemical Changes Unit	•••••	111
Chemical Changes Unit Overview	112	
Week 1: Bonding Lesson Plans	114	
Week 2: Chemical Reactions Lesson Plans	118	
Week 3: Types of Reactions Lesson Plans	122	
Week 4: Oxidation and Reduction Lesson Plans	126	
Mixtures Unit	•••••	131
Mixtures Unit Overview	132	
Week 1: Mixtures Lesson Plans	134	
Week 2: Separating Mixtures Lesson Plans	138	
Week 3: Crystals Lesson Plans	142	
Week 4: Scientist Study – Louis Pasteur	146	
Acids and Bases Unit	••••••	149
Acids and Bases Unit Overview	150	
Week 1: Acids and Bases Lesson Plans	152	
Week 2: pH Lesson Plans	156	
Week 3: Salts Lesson Plans	160	
Week 4: Scientist Study – Marie Curie	164	
Organic Chemistry Unit	••••••	167
Organic Chemistry Unit Overview	168	
Week 1: Organics Compounds Lesson Plans	170	
Week 2: Alcohols and Esters Lesson Plans	174	
Week 3: Hydrocarbons Lesson Plans	178	
Week 4: Polymers and Plastics Lesson Plans	182	
Appendix	•••••••••••••••••••••••	
Polar and Non-polar Molecules	188	
Transition Metal Hunt	189	
Neutralization	190	
Glossary	••••••••••••••••	191
General Templates	••••••	197
Project Record Sheet	198	
Schedule Templates	199	

Chemistry for the Grammar Stage Introduction to the Updated Edition

Since writing the first edition of *Chemistry for the Grammar Stage*, I have co-authored *Success in Science: A Manual for Excellence in Science Education* with Bradley Hudson. The purpose of this updated edition was to re-align this program with our research. It now reflects the components of the Classic Method of elementary science instruction suggested in the book. This method is loosely based on the ideas for classical science education that are laid out in *The Well-trained Mind: A Guide to Classical Education at Home* by Jessie Wise and Susan Wise Bauer.

In *Success in Science*, we compare the elementary student to an empty bucket that is waiting to be filled with meaningful information. My goal in writing this curriculum was to provide you with tools to give your elementary student exposure to the topics of atoms, elements, the periodic table and other chemical principles, thus building a knowledge base for future studies. For this reason, I have included weekly scientific demonstrations, reading suggestions, notebooking assignments, and additional activities.

This program is designed to be used during the elementary years, specifically 2nd through 5th grade. It includes a buffet of options that can be completed in either two days or five days each. Alternatively, if you desire, you could set aside an hour a week to be your science day in which you do all the readings, narrations, and activities planned for the week. Please feel free to act as the student's scribe as you complete the narration pages and lab reports.

Student Workbook (SW)

This teacher's guide is designed to work in conjunction with the *Chemistry for the Grammar Stage Student Workbook*. This workbook is sold separately, but it is critical to the success of this program. It contains all the pages you will need to complete the narrations, lab reports, and multiweek projects. The student workbook gives the students the ability to create a lasting memory of their first journey through chemistry.

Scientific Demonstrations

The scientific demonstrations scheduled in the guide generally use easy-to-find materials and tie into what is being studied. Each one has a corresponding lab report in the student workbook. At this age, you will be the driving force behind these demonstrations, meaning that you will be the one in control, and the student will be watching and participating when necessary. These demonstrations are designed to give them a beginners' look at the scientific method and how scientific tests work. It is not necessary to ask the students to predict the outcome of the demonstration since they have no knowledge base to determine what the answer should be. However, if the students enjoy predicting or they are able to tell you what will happen, please feel free to let them do so.

Each lab report includes four sections:

1. The "Our Tools" section is for the materials that were used during the demonstration.

Chemistry for the Grammar Stage Teacher Guide ~ Introduction

- 2. The "Our Method" section is for a brief description of what was done during the scientific demonstration. This should be in the students' words.
- 3. The "Our Outcome" section is for what the students observed during the demonstration.
- 4. The "Our Insight" section is for what the students learned from the scientific demonstration.

Any time you see a box for a picture on the lab report, you can have the students draw what happened, or you can take a picture of the demonstration and glue it in the box. For younger students, I recommend that you do most (if not all) the writing for them on the lab reports.

Science-oriented Books

The science-oriented books section includes reading assignments from encyclopedias, discussion questions, and additional books for every lesson. Each reading assignment should be read with the students, or if they are capable, have them read the assignments on their own. After the reading assignment is completed, discuss the topic with the students using the provided discussion questions. These questions are meant to help the students begin to gather their thoughts in preparation for giving a narration.

In this edition of *Chemistry for the Grammar Stage*, I have also included a list of additional books for you to choose from each week. They are meant to be checked out from the library, and are not necessary to the success of this program. The list is there in case you decide that you would like to dig a little deeper into the topics. I have done my best to choose in-print, widely available books, but since every library is different, the books listed may not be available in your area. If that is the case, simply look up the topic in your local card catalog.

Notebooking

For the notebooking component, you will ask the students to narrate what they have learned from the science-oriented books. They should add their narration to their student workbook. For younger students, I recommend that you have them dictate what they have learned to you and then you write this into their student workbook. You can also have the students copy their narration into the workbook. You should expect three to four sentences from a third- or fourth- grade student.

Next, have the students color the provided picture on the narration page. All the pages and pictures you need are included in the student workbook. I suggest that you read over these pages monthly so that the students get a review of what they have been learning. I have also included optional lapbook assignments in case your students prefer to use lapbooks over notebooking.

Finally, go over the vocabulary with the students and enter it into their glossary at the rear of the student workbook. You can write this for them, have them copy the definition, or dictate the definition to the students. If you choose to have the students look up the definitions, I have included a glossary of the terms in this program in the Appendix on pp. 192-195.

Multi-week Projects and Activities

This guide includes ideas for multi-week projects and additional activities that coordinate with each lesson. The pages and pictures needed for the multi-week projects are included in the student workbook, while the directions for creating the projects are found in this guide. The additional activities include crafts and other activities that can enhance the students' learning time. There are no sheets to record these additional activities in the student workbook. However, I have included a project record sheet template on pg. 198 of the Appendix of this guide.

Memorization

The elementary student is very capable of receiving and memorizing information. With this in mind, I recommend that you capitalize on this fact by having your students memorize the included vocabulary and basic facts related to chemistry. A list of simple poems that you can use to help them memorize the characteristics of atoms, molecules, and more is included on the unit overview sheet for each unit. Remember that these poems are included as a resource for you to augment students' learning experience and are not required to use this program successfully.

Possible Schedules

I have written this updated edition to contain a buffet of activities that you can choose from when guiding the students through their first look at chemistry. This gives you, the teacher, complete freedom in what you would like to utilize to present and explore the concepts each week. However, I have also included two potential schedules for you to give an idea of how you could schedule each week. You can choose to use these as your guide or create your own. I have included two schedule templates on pp. 199-200 of the Appendix of this guide for you to use. Please note that the older spine options are primary on the schedule and younger spine options are in parenthesis.

Quizzes

We have also created a set of weekly quizzes to use with this program, which can be found at the back of the student workbook. Although these quizzes are not essential, they are helpful in assessing how much the students are retaining. You can also use the quizzes as a review of what the students have studied by giving the quiz orally or by having the students fill each quiz out with the assistance of their workbooks. The correct answers for the quizzes are included at the end of each week in this guide.

Coordinating Products

The following products by Elemental Science coordinate with this program. These eBooks are available separately through our website or with a combo package.

Chemistry for the Grammar Stage Lapbooking Templates — We have designed templates for seven lapbooks to coordinate with Chemistry for the Grammar Stage. You can use these

Chemistry for the Grammar Stage Teacher Guide ~ Introduction

lapbooks as a means of review or in place of the student workbook. The directions for using these templates are found in this guide under the notebooking section.

Chemistry for the Grammar Stage Coloring Pages — We have prepared coloring pages to coordinate with almost every *Chemistry for the Grammar Stage*. Each page has a key fact about the topic along with a large picture to color.

Helpful Articles

Our goal as a company is to provide you with the information you need to be successful in your quest to educate your student in the sciences at home. This is the main reason we share tips and tools for homeschool science education on our blogs. As you prepare to guide your students through this program, you may find the following articles helpful:

Classical Science Curriculum for the Grammar Stage Student — This article explains the goals of grammar stage science and demonstrates how classical educators can utilize the tools they have at their disposal to reach these goals.

1 http://elementalblogging.com/classical-science-curriculum-grammar/

- *Scientific Demonstrations vs. Experiments* This article shares about these two types of scientific tests and points out how to use scientific demonstrations or experiments in your homeschool.
 - <u>http://elementalscience.com/blogs/news/89905795-scientific-demonstrations-or-experiments</u>
- *What is notebooking?* This article clarifies what notebooking is and describes how this method can be a beneficial addition to your homeschool.
 - 1 https://elementalscience.com/blogs/news/what-is-notebooking

Additional Resources

The following page contains quick links to the activities suggested in this guide along with several helpful downloads:

1 https://elementalscience.com/blogs/resources/cgs

Final Thoughts

As the author and publisher of this curriculum, I encourage you to contact us with any questions or problems that you might have concerning *Chemistry for the Grammar Stage* at support@ elementalscience.com. We will be more than happy to answer them as soon as we are able. You may also get additional help at our yahoo group (http://groups.yahoo.com/group/elemental_science/). I hope that you enjoy *Chemistry for the Grammar Stage*!

Required Book List

The following books are scheduled for use in this guide. You will need to purchase them or find a suitable substitute to complete this program.

Encyclopedias

All Units (Choose one age-appropriate option.)

Usborne Science Encyclopedia (best for 3rd through 5th grade) OR Basher Science Chemistry (best for 1st through 3rd grade)

Periodic Table Unit (Choose one age-appropriate option.)

Scholastic's The Periodic Table (best for 3rd through 5th grade) OR Basher Science The Periodic Table (best for 1st through 3rd grade)

(Note—There is not a great deal of material out there for each individual element of the periodic table. If you find your student would like more, I suggest trying to find a copy of *Fizz, Bubble, Flash* or Theodore Gray's *Elements: A Visual Exploration of Every Known Atom in the Universe.*)

Scientist Studies (You can also choose another option based on what your library offers.)

Marie Curie (Week 4 of the Acids and Bases Unit) *Marie Curie's Search for Radium by Beverly Birch and Christian Birmingham*

Scientific Demonstration Books

You will need the following book to complete the scientific demonstrations in this program.

📾 Janice VanCleave's Chemistry for Every Kid

Additional Books Listed by Week

The books listed below are completely optional! They are not required to complete this program. Instead, this list is merely a suggestion of the additional books that are available to enhance your studies. This list is by no means exhaustive.

Atoms and Molecules Unit

Atoms and Molecules Week 1

- What Are Atoms? (Rookie Read-About Science) by Lisa Trumbauer
- Atoms and Molecules (Building Blocks of Matter) by Richard and Louise Spilsbury
- Atoms (Simply Science) by Melissa Stewart

Atoms and Molecules Week 2

Atoms and Molecules (Building Blocks of Matter) by Richard and Louise Spilsbury

Chemistry for the Grammar Stage Teacher Guide ~ Book List

Supplies Needed by Week

Atoms and Molecules Unit

Week	Supplies needed	
1	4 Pipe cleaners, Round beads in three different colors, at least 3 of each color	
2	Jar with lid, Water, Food Coloring	
3	Empty plastic bread sack	
4	Cup, Water, Salt	

Periodic Table Unit

Week	Supplies needed
1	Legos - a variety of colors and sizes, Paper, Pen
2	Metal can, Thermometer, Table salt, Crushed ice
3	Epsom salts, Ammonia, Clear jar
4	3 Tea bags, 4 Different types of juice, Clear plastic glasses, Tablespoon
5	Alum powder, Ammonia, Clear jar
6	Limewater (Powdered lime, Water, Jar with lid), Straw, Cup
7	Can of dark cola soda, Glass, Dirty Pennies
8	Apple, Vitamin C tablet
9	Iodine swab, Notebook paper, Lemon juice, Cup, Paint brush
10	Helium-filled balloon, Scissors
11	3 Cups, 3 Pencils, 3 Clear liquids (i.e., water, alcohol, and corn syrup)
12	Bite-sized food, such as raisins or cereal puffs, Timer

Physical Changes Unit

Week	Supplies needed	
1	3 Balloons, Ice, Water	
2	Orange Juice, Cup	
3	3 Toothpicks, Dish soap, Bowl	
4	2-Liter soda bottle, Quarter, Water	

Supplies Needed by Week

Chemical Changes Unit

Week	Supplies needed
1	Wax paper, Toothpicks, Eyedroppers, Water
2	Saucer, Paper towel, Vinegar, Pennies
3	Bread, Iodine, Eyedropper, Wax paper
4	Apple, Lemon juice

Mixtures Unit

Week	Supplies needed	
1	Clear glass, Toothpick, Powdered fruit drink, Water	
2	Black water soluble pen, Coffee filter, Saucer, Paper clip	
3	Glass jar, Pencil, Pipe cleaners, Borax, Hot water	
4	No supplies needed.	

Acids and Bases Unit

Week	Supplies needed
Unit	Strainer, Glass jar, Distilled water, Purple Cabbage, Coffee filters,
Prep*	Cookie sheet, Bowl, Scissors, Plastic bag
1	Lemonade, Cabbage indicator, Glass, Tablespoon
2	Cabbage paper, Paper, Eyedroppers, Vinegar, Ammonia, Jars
3	Vinegar, Baking soda, Water, Cabbage juice, Cabbage paper, 2 Clear cups, Eyedropper
Ч	No supplies needed.

Organic Chemistry Unit

Week	Supplies needed	
1	Construction paper, 6 Types of food (Cheese, Fruit, Yogurt, Chips, Muffin, Vegetable), Marker	
2	Jar with lid, Rubbing alcohol, Cloves	
3	Large clear glass bowl, Vegetable Oil, Water, Plastic spoon, Cotton balls, Polyester felt square	
4	Vegetable oil, Cornstarch, Water, Food coloring, Plastic bag, Eyedropper	

Chemistry for the Grammar Stage

Atoms and Molecules Unit

Atoms and Molecules Unit Overview (4 weeks)

Books Scheduled

Encyclopedias

Basher Science Chemistry
 OR
 Usborne Science Encyclopedia

Scientific Demonstrations Book

📾 JVC Chemistry for Every Kid

Sequence for Study

- Week 1: Atoms
- 🎝 Week 3: Air
- Week 4: Water

Atoms and Molecules Poem to Memorize

Atoms and Molecules

Atoms are the stuff that makes what we got, Forming molecules found in your teapot. Inside the atom are three little specks, Subatomic particles kept in check. At the center are neutrons and protons, Spinning around in shells are electrons. All three parts balanced in equality, Gives the atom its own frivolity. One or more atoms uniquely combine, Creating a molecular design. These molecules we can breathe, eat, and wear. Meet them every day in water and air.

Supplies Needed for the Unit

Week	Supplies needed
1	4 Pipe cleaners, Round beads in three different colors, at least 3 of each color
2	Jar with lid, Water, Food Coloring

3	Empty plastic bread sack
4	Cup, Water, Salt

Unit Vocabulary

- 1. **Electron –** A negatively charged particle in an atom.
- 2. **Proton –** A positively charged particle in an atom.
- 3. **Neutron –** A neutral particle in an atom.
- 4. **Isotope -** An atom that has a different number of neutrons and so has a different mass number from the other atoms of an element.
- 5. **Electron Shell –** The region around an atom's nucleus in which a certain amount of electrons can reside.
- 6. **Molecule -** A substance made up of two or more atoms that are chemically bonded.
- 7. Air A mixture of gases that form a protective layer around the Earth.
- 8. Hard Water Water that contains a lot of dissolved minerals.

Week 1: Atoms Lesson Plans

Scientific Demonstration: Model Atom

Supplies Needed

- ✓ 4 Pipe cleaners
- \checkmark Round beads in three different colors, at least 3 of each color

Purpose

This demonstration is meant to help the students see what an atom looks like.

Instructions

- 1. Have the students select which beads will be electrons, protons, and neutrons.
- 2. Next, have them string three protons beads and three neutrons beads on one of the pipe cleaners, alternating between the two. Once done, have the students wrap the this portion of the pipe cleaner into a ball to form a nucleus, leaving a straight end to connect to the electron rings they will make in the next step.
- 3. Then, have the students place one electron bead on a pipe cleaner and twist the pipe cleaner closed to form a ring. Repeat this process two more times, so that they have 3 electron rings.
- 4. Finally, fit the rings inside each other and then hang the nucleus ball in the center, using the pipe cleaner tail left in step two to attach the nucleus and hold the rings together. (*See image for reference.*)

 Have the students take a picture of their atoms and complete the Lab Report on SW pg. 9.

Take it Further

Have the students repeat the process, only this time have them create an isotope by adding or removing one of the neutrons.

Science-Oriented Books

Reading Assignments

📾 Basher Science Chemistry pg. 26 Atom, pg. 28 Isotope

■ Usborne Science Encyclopedia pp. 10–11 Atomic Structure, pg 13 Isotopes and Atomic Theory
 (Optional) Additional topics to explore this week: Basher Science Chemistry pg. 30
 (Ions)

Discussion Questions

After reading the selected pages, ask the following questions for your discussion time.

Subatomic Particles

? What are the three subatomic particles?

? What are their charges?

Atoms

- ? What is an atom?
- ? What does an atom look like?

Isotope

? What is an isotope?

(Optional) Additional Books

- A What Are Atoms? (Rookie Read-About Science) by Lisa Trumbauer
- Atoms and Molecules (Building Blocks of Matter) by Richard and Louise Spilsbury
- Atoms (Simply Science) by Melissa Stewart

Notebooking

Writing Assignments

□ Narration Page - Have the students dictate, copy, or write one to four sentences on subatomic particles, atoms, and isotopes on SW pg. 8. For example, for this week the students could dictate, copy, or write the following for subatomic particles:

There are three subatomic particles – protons, neutrons, and electrons. Protons and neutrons live in the nucleus of an atom. Electrons fly around the nucleus.

Protons are positively charged and electrons are negatively charged.

- (Optional) Lapbook Have the students begin the Atoms and Molecules lapbook by cutting out and coloring the cover on pg. 6.
- (Optional) Lapbook Have the students complete the Atoms wheel-book on pg. 7 of *Chemistry for the Grammar Stage Lapbooking Templates*. Have them cut along the solid lines, punch a hole in the center, and use a brad fastener to fasten the two circles together. Have the students write their electron narration to the left of the picture, their proton narration above the picture, and their neutron narration to the right of the picture. Finally, have them glue their mini-book into the lapbook.
- (Optional) Lapbook Have the students complete the Isotopes shutterfold book on pg. 8 of Chemistry for the Grammar Stage Lapbooking Templates. Have them cut out and fold the template. Have the students color the pictures on the cover. Have them write their narration about the isotopes inside the mini-book. Then, have them glue the mini-book into the lapbook.

Vocabulary

The following definitions are a guide. The students' definitions do not need to match word for word.

- Proton A positively charged particle in an atom. (SW pg. 113)
- ✓ Neutron A neutral particle in an atom. (SW pg. 111)

Isotope - An atom that has a different number of neutrons and so has a different mass number from the other atoms of an element. (SW pg. 110)

Multi-week Projects and Activities

Unit Project

X Atoms and Molecules Poster - Over this unit, the students will create a poster about atoms and molecules, giving them a visual representation of the basics of chemistry. The poster will have three main sections - sub atomic particles, atoms and elements, and molecules. This week, have the students add the electron, proton, and neutron to the "subatomic particle" section. They can draw or paint circles with charges for each or use pompoms. Then, have them use the same circles or pompoms to represent an atom on the left-hand side of the "atoms and elements" section. (*See the included image*.)

After the students finish the artwork, have them write a sentence or two about each subatomic particle. (*This has been done for you in the SW on pg. 6.*)

Projects for this Week

- **Coloring Pages -** Have the students color the following pages from *Chemistry for the Grammar Stage Coloring Pages*: Atoms pg. 5, Isotopes pg. 6.
- **Subatomic Particles –** Make some subatomic cookies with your students using a sugar cookie, white icing, and three different colors of M&M's. See the following website for directions:

1 http://technoprairie.blogspot.com/2009/02/atomic-cookies.html

- **Atoms -** Have the students make a fruit atom model. In the center of a plate, have the students build a mound of raspberries and grapes for the protons and neutrons in the nucleus. Then, they can roll blueberries in a circle around the nucleus for the electrons. Once, they are done playing, let the students gobble their atoms up!
- **Solution** Isotopes Have the students play an atoms and isotopes game. You can get directions for this game from the following blog post:
 - 1 http://elementalscience.com/blogs/science-activities/60317571-free-chemistry-game

Memorization

♥ This week, begin working on memorizing the *Atoms and Molecules* poem. (SW pg. 118)

Quiz

Weekly Quiz

• "Atoms and Molecules Unit Week 1 Quiz" on SW pg. Q-5.

Quiz Answers

1. Positive, Negative, Neutral

- 3. True
- 2. Protons, Neutrons, Electrons
- 4. Answers will vary

Chemistry for the Grammar Stage Teacher Guide ~ Atoms and Molecules Unit Week 1 Atoms

Possible Schedules for Week 1

Two Days a Week Schedule		
Day 1	Day 2	
Read about Atomic Structure (Atom) Add information about subatomic particles	□ Read about Isotopes and Atomic Theory (Isotope)	
and atoms to the students' Narration Page	Add information about isotopes to the students' Narration Page	
Do the Scientific Demonstration: Atom Model	Define isotope	
Work on memorizing the <i>Atoms and Molecules</i> poem	 Work on the Atoms and Molecules Poster Give Atoms and Molecules Week 1 guiz 	
Define electron, proton, and neutron		

Five Days a Week Schedule				
Day 1	Day 2	Day 3	Day 4	Day 5
 Do the Scientific Demonstration: Atom Model Define electron, proton, and neutron Choose one or more of the additional books to read from this week 	 Read about Atomic Structure sections on pg. 10 (Atom) Add information about subatomic particles and atoms to the students' Narration Page Complete the Subatomic Particles Project 	 Review the pages about Atomic Structure sections on pg. 11 (Atom) Add information about atoms to the students' Narration Page Complete the Atoms Project 	 Read about Isotopes and Atomic Theory (Isotope) Add information about isotopes to the students' Narration Page Complete the Isotopes Project Define isotope 	□ Give Atoms and Molecules Week 1 quiz □ Work on the Atoms and Molecules Poster
All Week Long			1	I

□ Work on memorizing the *Atoms and Molecules* poem

Week 2: Molecules Lesson Plans

Scientific Demonstration: Unseen Movement

Supplies Needed

- ✓ Jar with lid
- ✓ Water
- ✓ Food Coloring

Purpose

This demonstration is meant to help the students see how molecules move.

Instructions and Explanation

The instructions and explanation for this scientific demonstration are found on pp. 12-13 of *Janice VanCleave's Chemistry for Every Kid*. Have the students complete the Lab Report on SW pg. 11.

Take it Further

Have the students look at how temperature affects molecular motion by repeating the demonstration with a glass of cold and warm water. (*They should see that the food coloring molecules move much faster in the warm water.*)

Science-Oriented Books

Reading Assignments

- Basher Science Chemistry pg. 32 Molecules (Note The information for the electron shells is not in this resource. You will need to share with your students that the first shell can contain 2 electrons, the second shell can contain 8 electrons, and the third shell generally carries 8 electrons, but can carry as many as 18 for certain atoms.)
- 📾 Usborne Science Encyclopedia pp. 14–15 Molecules
- 🖴 "Polar and Nonpolar" on Appendix pg. 188
- rightarrow Molecules or Compounds Molecules are formed when two or more atoms join together. Compounds are formed when two or more elements join together. For example H_2 (hydrogen gas) is a molecule because two atoms of hydrogen are joined together. However, since there is only one type of element present, H_2 is not a compound. On the other hand, H_2O (water) is a molecule because the three atoms, one oxygen atom and two hydrogen atoms, have been joined together to form it. It is also a compound because it contains two different elements, hydrogen and oxygen. So, all compounds are molecules, but not all molecules are compounds.

(Optional) Additional topics to explore this week: Basher Chem pg. 34 (Giant Molecule)

Discussion Questions

After reading the selected pages, ask the following questions for your discussion time.

Electron Shells

- ? How many electrons fit in the first shell?
- ? How many electrons fit in the second shell?
- ? How many electrons fit in the third shell?

Molecule

- ? What is a molecule?
- ? What are some examples of molecules?
- ? What are two ways (models) of showing molecules?

Nonpolar and Polar

- ? What is a nonpolar molecule?
- ? What is a polar molecule?

(Optional) Additional Books

- Atoms and Molecules (Building Blocks of Matter) by Richard and Louise Spilsbury
- Atoms and Molecules (Why Chemistry Matters) by Molly Aloian
- Atoms and Molecules (My Science Library) by Tracy Nelson Maurer

Notebooking

Writing Assignments

- □ Narration Page Have the students dictate, copy, or write one to four sentences on electron shells, molecules, and nonpolar and polar molecules on SW pg. 10.
- (Optional) Lapbook Have the students work on the Electron Shell Diagram on pg. 8 of *Chemistry for the Grammar Stage Lapbooking Templates*. Have the students cut out the sheet, color the shells different colors, and add the information they have learned about how many electrons the first three shells can carry. Finally, have them glue their sheets into their lapbooks.

(Optional) Lapbook - Have the students work on the Molecules tab-book on pg. 9 of *Chemistry for the Grammar Stage Lapbooking Templates*. Have the students write the definition of a molecule on the definition page and then add any molecules they have learned about to the samples page. Set the mini-book aside and save it for next week.

Vocabulary

The following definitions are a guide. The students' definitions do not need to match word for word.

- Electron Shell The region around an atom's nucleus in which a certain amount of electrons can reside. (SW pg. 107)
- Molecule A substance made up of two or more atoms that are chemically bonded. (SW pg. 111)

Multi-week Projects and Activities

Unit Project

 \gg Atoms and Molecules Poster - This week, have the students add a picture of Chemistry for the Grammar Stage Teacher Guide ~ Atoms and Molecules Unit Week 2 Molecules molecules to the "molecules and compounds" section of their poster. This can be as simple as the written formula for water (H_2O) or methane (CH_4) or as complicated as a drawing of one of the molecules they saw in their readings. After the students finish the artwork, have them write a sentence or two about molecules.

Projects for this Week

- Coloring Pages Have the students color the following pages from *Chemistry for the Grammar Stage Coloring Pages*: Electron Shells pg. 7, Molecules pg. 8, Polar and Nonpolar Molecules pg. 9.
- Electron Shells Have the students play the atoms and isotopes game again, only this time focus on reviewing how many electrons are in each shell. If you did not play this last week, you can get directions for this game from the following blog post:

1 http://elementalscience.com/blogs/science-activities/60317571-free-chemistry-game

Molecules - Have the students make molecules models out of LEGOS using the examples from the following pin:

¹ <u>https://www.pinterest.com/pin/192036371586132562/</u>

Polar and Nonpolar - Have the students have a molecule race using a polar substance (water) and a nonpolar one (wax paper). Use an eyedropper to sprinkle a drop of water at the end of a wax paper sheet in front of each student. Then, give each of the students a straw and have them blow through it to move their water "molecule" drop to the finish line at the other end of the wax paper.

Memorization

♥ This week, continue working on memorizing the *Atoms and Molecules* poem. (SW pg. 118)

Quiz

Weekly Quiz

• "Atoms and Molecules Unit Week 2 Quiz" on SW pg. Q-6.

Quiz Answers

- 1. 2, 8, 8 to 18
- 2. False (A molecule can be made up of more than one element.)
- 3. Charged, Not charged
- 4. Answers will vary

26

Possible Schedules for Week 2

Two Days a Week Schedule			
Day 1	Day 2		
□ Read about Molecules (Molecules)	□ Read about Polar and Nonpolar molecules		
Add information about electron shells and	from the Appendix		
molecules to the students' Narration Page	□ Add information about polar and nonpolar		
Do the Scientific Demonstration: Unseen	molecules to the students' Narration Page		
Movement	U Work on memorizing the <i>Atoms and</i>		
Define electron shell and molecule	Molecules poem		
□ Work on the Atoms and Molecules Poster	Give Atoms and Molecules Week 2 quiz		

Five Days a Week Schedule				
Day 1	Day 2	Day 3	Day 4	Day 5
Do the	🗖 Read about	🗖 Read about	🗖 Read about	Give Atoms
Scientific	Molecules -	Molecules -	Polar and	and Molecules
Demonstration:	sections on pg. 14	sections on pg.	Nonpolar	Week 2 quiz
Unseen Movement	□ Add information	15 (Molecules) □ Add	molecules from the Appendix	□ Work on the Atoms and
Define	about electron	information	🗖 Add	Molecules Poster
electron shell and	shells and atoms	about molecules	information	
molecule	to the students'	to the students'	about polar	
Choose one	Narration Page	Narration Page	and nonpolar to the students'	
additional books	Electron Shells	the Molecules	Narration Page	
to read from this	Project	Project	Complete	
week			the Polar and	
			Nonpolar Project	
All Week Long				
General Work on memorizing the <i>Atoms and Molecules</i> poem				

Chemistry for the Grammar Stage Student Workbook

Atoms and Molecules Unit	5
Unit Project: Atoms and Molecules Poster	6
Week 1: Atoms	8
Week 2: Molecules	10
Week 3: Air	12
Week 4: Water	14
Periodic Table Unit	
Unit Project: Periodic Table Poster	18
Week 1: Elements and the Periodic Table	20
Week 2: Alkali Metals	22
Week 3: Alkaline Earth Metals	24
Week 4: Transition Metals	26
Week 5: Boron Elements	28
Week 6: Carbon Elements	30
Week 7: Nitrogen Elements	32
Week 8: Oxygen Elements	34
Week 9: Halogens	36
Week 10: Noble Gases	38
Week 11: Lanthanides	40
Week 12: Actinides	42
Physical Changes Unit	45
Unit Project: States of Matter Poster	46
Week 1: States of Matter	48
Week 2: Changes in State	50
Week 3: Surface Tension	52
Week 4: Diffusion	54
Chemical Changes Unit	57
Unit Project: Chemical Changes Poster	58
Week 1: Bonding	60
	_

Week 2: Chemical Reactions	62	
Week 3: Types of Reactions	64	
Week 4: Oxidation and Reduction	66	
Mixtures Unit	69	9
Unit Project: Mixtures Poster	70	
Week 1: Mixtures	72	
Week 2: Separating Mixtures	74	
Week 3: Crystals	76	
Week 4: Scientist Study- Louis Pasteur	78	
Acids and Bases Unit	8.	1
Unit Project: Acids and Bases Posters	82	
Week 1: Acids and Bases	84	
Week 2: pH	86	
Week 3: Salts	88	
Week 4: Scientist Study – Marie Curie	90	
Organic Chemistry Unit	93	3
Week 1: Organic Compounds	94	
Week 2: Alcohols and Esters	96	
Week 3: Hydrocarbons	98	
Week 4: Polymers and Plastics	100	
Glossary		3
Memory Work		7
Project Pictures		5
Quizzes	Q1-Q4(0

Chemistry for the Grammar Stage

Atoms and Molecules Unit

Atoms and Molecules Poster

Subatomic Particles

Atoms and Elements

Chemistry for the Grammar Stage Student Workbook ~ Atoms and Molecules Unit Project

Molecules and Compounds

Chemistry for the Grammar Stage Student Workbook ~ Atoms and Molecules Unit Project

Subatomic Particles

Atoms

Chemistry for the Grammar Stage Student Workbook ~ Atoms and Molecules Unit Week 1 $\,$

Lab Report: Model Atom

Our Tools _______ Our Method _______ Our Outcome ______ My Model ______

Chemistry for the Grammar Stage Student Workbook ~ Atoms and Molecules Unit Week 1

Electron Shells

______ electrons fit in the first shell. ______ electrons fit in the second shell. ______ electrons fit in the third shell.

Molecules

Chemistry for the Grammar Stage Student Workbook ~ Atoms and Molecules Unit Week 2

Lab Report: Molecule Mixture

Our Tools	
Our Method	
Our Outcome	
First Observation	After 24 Hours

Chemistry for the Grammar Stage

Glossary

Detergent —

Diffusion —

Electron —

Electron Shell —

Chemistry for the Grammar Stage

Quizzes

1. Match the following subatomic particles with their charge.

the center with		spinning arour	nd the outside.
An atom has		_ and	in a mass at
Neutron	Positive		
Electron	Negative		
Proton	Neutral		

- 3. True or False: An isotope is an atom that has a different number of neutrons.
- 4. What is the most interesting thing you learned this week?

2.

1. Fill in the blanks with the number of electrons found in the shell.

- 2. True or False: A molecule is always made up of only one element.
- Polar molecules are (not charged / charged), while nonpolar molecules are (not charged / charged).
- 4. What is the most interesting thing you learned this week?

Chemistry for the Grammar Stage Lapbooking Templates

Introduction

The lapbooking templates provided in this eBook are meant to coordinate with *Chemistry for the Grammar Stage*. The directions for completing each of the mini-books in this document are included in the *Chemistry for the Grammar Stage Teacher Guide*. You can use these lapbooks to review the concepts learned or you can have the student create each one in lieu of completing the *Chemistry for the Grammar Stage Student Workbook*.

There are templates for five lapbooks contained in this eBook, one for atoms and molecules, one for the periodic table, one for physical and chemical changes, one for mixtures, and one for organic chemistry. You can have your students create five separate lapbooks or combine them to create a single larger lapbooks on chemistry. If you decide to create the larger complete lapbook, we have included a different cover page for you to use on pg. 59 of this document.

Table of Contents

Atoms and Molecules Lapbook	• • • • • • • • • • • • • • • • • • • •	5
Atoms and Molecules Lapbook Cover Page Template	6	
Atoms Wheel-book	7	
Isotopes Shutterfold Book	8	
Electron Shell Diagram	8	
Molecules Tab-book	9	
Air Mini-book	10	
Water Mini-book	11	
Atoms and Molecules Poem	12	
Periodic Table Lapbook	•••••	
Periodic Table Lapbook Cover Page Template	14	
Element Diagram Sheet	15	
Periodic Table Book	16	
Alkali Metals Flip-book	17	
Central Periodic Table	18	
Alkaline Earth Metals Flip-book	19	
Transition Metals Tab-book	20	
Boron Elements Flip-book	22	
Carbon Elements Flip-book	23	
Nitrogen Elements Flip-book	24	

Oxygen Elements Flip-book	25	
Halogens Flip-book	26	
Noble Gases Flip-book	27	
Lanthanide Elements Flip-book	28	
Actinide Elements Flip-book	29	
Periodic Table Poem	30	
Physical and Chemical Changes Lapbook		31
Physical and Chemical Changes Lapbook	Cover	
Page Template	32	
States of Matter Cut-flap Book	33	
Changes in State Arrow Book	34	
How States Behave Tab-book	35	
Bonding Triangle Book	36	
Reactions Mini-book	37	
Types of Reaction Sheet	38	
Oxidation / Reduction Wheel-book	39	
Mixtures Lapbook		40
Mixtures Cover Page Template	41	
Mixtures Mini-book	42	
Separating Mixtures Tab-book	43	
Crystals Hexa–book	45	
Acids and Bases Tab-book	46	
pH Scale Sheet	47	
Neutralization Sheet	48	
Organic Chemistry Lapbook		49
Organic Chemistry Cover Page Template	50	
Organic Compounds Tab-book	51	
Detergents Mini-book	56	
Esters Mini-book	57	
Organics Poem	58	
Chemistry Lapbook Cover Page Template		59

Atoms and Molecules Lapbook

You will need 2 sheets of card-stock or one file folder. Begin by taping the two sheets together on the longest edge, to look like this:

Overall Directions

For each mini-book have the students color the pictures. Then, write the narration sentences for the students or have them copy the information into the inside of the mini-book. Finally, glue the mini-books and poems onto the lapbook. You can use the cover template provided or allow the students to decorate the cover as they choose.

Atoms Wheel-book

Chemistry for the Grammar Stage Coloring Pages

Introduction

The coloring pages provided in this eBook are meant to coordinate with *Chemistry for the Grammar Stage*. There is at least one coloring page for every week of the program. Each page has a large, black line illustration along a key fact sentence for the students to learn about the topic. Simply have the students color the picture as they desire using crayons, colored pencils, or watercolor paints. As they work, you can read the fact out loud several times.

You can use these pages with your younger "follow-along" students, with students who love to color, or with reluctant writers. We have scheduled these pages under the "Projects for the Week" section in the *Chemistry for the Grammar Stage Teacher Guide*.

Table of Contents

Atoms and Molecules Unit

Atoms Coloring Page	5
Isotopes Coloring Page	6
Electron Shells Coloring Page	7
Molecules Coloring Page	8
Polar and Nonpolar Coloring Page	9
Air Coloring Page	10
Water Coloring Page	11
Periodic Table Unit	
Periodic Table Coloring Page	12
Alkali Metals Coloring Page	13
Alkaline Earth Metals Coloring Page	14
Transition Metals Coloring Page	15
Boron Elements Coloring Page	16
Carbon Elements Coloring Page	17
Nitrogen Elements Coloring Page	18
Oxygen Elements Coloring Page	19
Halogens Coloring Page	20
Noble Gases Coloring Page	21
Lanthanides Coloring Page	22
Actinides Coloring Page	23
Physical Changes Unit	

Solids Coloring Page	24
0 0	

Liquids Coloring Page	25
Gases Coloring Page	26
Changes in State Coloring Page	27
Evaporation Coloring Page	28
Surface Tension Coloring Page	29
Diffusion Coloring Page	30
Chemical Changes Unit	
Bonding Coloring Page	31
Chemical Reactions Coloring Page	32
Types of Reactions Coloring Page	33
Oxidation Coloring Page	34
Reduction Coloring Page	35
Mixtures Unit	
Mixtures Coloring Page	36
Filtration Coloring Page	37
Chromatography Coloring Page	38
Distillation Coloring Page	39
Crystals Coloring Page	40
Acids and Bases Unit	
Acids Coloring Page	41
Bases Coloring Page	42
pH Coloring Page	43
Neutralization Coloring Page	44
Organic Chemistry Unit	
Organic Compounds Coloring Page	45
Detergents Coloring Page	46
Alcohols Coloring Page	47
Esters Coloring Page	48
Hydrocarbons Coloring Page	49
Polymer Coloring Page	50
Plastic Coloring Page	51

Atoms are tiny particles from which everything is made.

Isotopes are atoms with different numbers of neutrons.

Electron shells are the areas in an atom where the electrons live. $\frac{7}{7}$

Molecules are made of two or more atoms bonded together.

elemental science

Are you ready to start?

Learn about the periodic table, reactions, and more by purchasing *Chemistry for the Grammar Stage* here:

1 https://elementalscience.com/collections/chemistry-for-the-grammar-stage

Or check out the rest of our award-winning Classical Science sereies here:

1 https://elementalscience.com/collections/classical-science

