G8-11 Congruence Rules

If two polygons are congruent, you can place them one on top of the other so that they match exactly.
The vertices that match are called corresponding vertices.
The angles that match are called corresponding angles.
The sides that match are called corresponding sides.

1. The two triangles are congruent. Are the two thick sides corresponding sides? Explain.
a)

b)

c)

Congruence Rules for Triangles

SSS (side-side-side)

SAS (side-angle-side)

Two triangles are congruent if they have ...

- three pairs of equal corresponding sides
- two pairs of equal corresponding sides and a pair of equal corresponding angles between these sides

ASA (angle-side-angle)

- two pairs of equal corresponding angles and a pair of equal corresponding sides between these angles

2. Identify the congruence rule that tells you that each pair of triangles is congruent. Write the congruence statement.
a)

b)

Congruence rule: \qquad
$\triangle \quad A B C \cong \Delta$ \qquad
Congruence rule:
\qquad
c)

Δ \qquad $\cong \Delta$ \qquad
Congruence rule: \qquad
Δ \qquad $\cong \Delta$ \qquad
3. In the triangles in the picture, $\angle A=\angle D=20^{\circ}$, $\angle B=\angle E=35^{\circ}$, and $B C=E F$.
a) Mark the equal sides and angles on the picture.
b) Do the given equations of sides and angles
fit any congruence rule? \qquad
c) The sum of the angles in a triangle is \qquad .
$\angle C=$ \qquad - (\angle \qquad $+\angle$ \qquad $)=$ \qquad $\angle F=$ \qquad $-(\angle$ \qquad $+\angle$ \qquad) $=$ \qquad

d) Which congruence rule can you apply now? \qquad
Write the equations for the sides and angles that the congruence rule requires.
\qquad $=$ \qquad , \qquad $=$ \qquad , \qquad
\qquad
4. Nina thinks that she can apply the same method as in Question 3 to the two triangles shown.
a) Are the triangles congruent? \qquad .
b) $\angle N=$ \qquad $-\angle$ \qquad $-\angle$ \qquad $=$ \qquad
$\angle J=$ \qquad $-\angle$ \qquad $-\angle$ \qquad $=$ \qquad
c) Explain why the ASA congruence rule does not work for $\triangle J K L$ and $\triangle N O M$.

\qquad
\qquad
5. a) Measure the angles and the sides of these triangles. Write the measurements on the diagram.
b) Which angles are equal?
\qquad
c) Which sides are equal?
\qquad

d) Are the triangles congruent? Explain why the congruence rules do not apply here.

Angle-angle-angle (AAA) is not a congruence rule.
6. Draw a counterexample for this statement:

All triangles that have three pairs of corresponding equal angles are congruent.
7. a) What sides and angles in $\triangle A B C$ and $\triangle D E F$ are equal?

b) Can you use the SAS congruence rule? Why or why not? \qquad

c) Do triangles $\triangle A B C$ and $\triangle D E F$ look congruent? \qquad
d) Is side-side-angle a congruence rule? Is angle-side-side a congruence rule? Explain.
8. Scientists want to measure the distance across a crater on Mars. They send a rover along the path $A O C D O B$.
a) What are the equal sides and angles in triangles $\triangle A B O$ and $\triangle O C D$?
\qquad $=$ \qquad
\qquad $=$ \qquad
\qquad $=$ \qquad
b) What congruence rule can you use? \qquad -
\&) What is the distance $A B$ across the crater? Explain how you know.
9. Draw two triangles that are not congruent. Explain why the triangles are not congruent.
10. Sketch a counterexample to show why this statement is false.

If two triangles have two pairs of corresponding sides that are equal, the triangles are congruent.
11. $\triangle P Q R$ and $\triangle X Y Z$ have $P Q=X Y=5 \mathrm{~cm}$ and $Q R=Y Z=7 \mathrm{~cm}$. Sketch the triangles. Does the statement given ensure that $\triangle P Q R \cong \triangle X Y Z$? If so, note the congruence rule.
a) $\angle P=\angle Y$
b) $\angle Q=\angle Y$
c) $\angle P=\angle X$
d) $P R=X Z$
12. $\triangle B C D$ and $\triangle F G H$ have $\angle C=\angle G$ and $\angle D=\angle H$. Sketch the triangles. Does the statement given ensure that $\triangle B C D \cong \triangle F G H$? If so, note the congruence rule.
a) $\angle B=\angle F$
b) $C D=G H$
c) $B D=F H$
d) $B C=G H$

G8-12 Congruence (Advanced)

REMINDER: Congruence Rules for Triangles

SAS (side-angle-side)
If in $\triangle A B C$ and $\triangle E F D, A B=E F$, $\angle B=\angle F$, and $B C=F D$, then $\triangle A B C \cong \triangle E F D$.

ASA (angle-side-angle)
If in $\triangle A B C$ and $\triangle E F D, \angle A=\angle E$, $A B=E F$, and $\angle B=\angle F$, then $\triangle A B C \cong \triangle E F D$.

SSS (side-side-side)
If in $\triangle A B C$ and $\triangle E F D$,
$A B=E F, A C=E D$, and $B C=F D$, then $\triangle A B C \cong \triangle E F D$.

1. In the diagram, $C M=7 \mathrm{~cm}$. Fill in the blanks to find the length of $D M$.
a) $A M=$ \qquad and $\angle A=$ \qquad .
b) $\angle A M C=$ \qquad because they are \qquad angles.
c) $\triangle A M C \cong \Delta$ \qquad by the \qquad congruence rule.

This means $D M=$ \qquad $=$ \qquad cm .

2. In the diagram, $K L=M N=42 \mathrm{~cm}$, and $K N=L M=50 \mathrm{~cm}$. $\angle K=20^{\circ}$ and $\angle K N L=50^{\circ}$. Fill in the blanks to find $\angle M$ and $\angle M L N$.
a) Which sides are equal in triangles $K L N$ and $L M N$?
\qquad
b) $\Delta K L N \cong \Delta$ \qquad by the \qquad congruence rule.

So, $\angle M=\angle$ \qquad $=$ \qquad and $\angle M L N=\angle$ \qquad $=$ \qquad .

3. A school wants to install a square rope climbing structure over a large circular sandbox. A contractor places a pole in the center O of the box and places rope anchors at the opposite sides of the pit in points W, X, Y, and Z.
a) Draw the quadrilateral $W X Y Z$.
b) The contractor claims that $W X Y Z$ is a square. Is he correct? \qquad
c) Use congruent triangles to explain your answer in part b).

To prove that two polygons are congruent, imagine placing them one on top of the other, so that they match exactly. If the polygons have equal corresponding sides and equal corresponding angles, they are congruent. Example:
$\angle A=\angle G, \angle B=\angle F, \angle C=\angle E, \angle D=\angle H$
$A B=G F, B C=F E, C D=E H, D A=H G$
So $A B C D \cong G F E H$.

4. The equal sides are marked on the quadrilaterals $J K L M$ and $N O P Q$.

Also, $\angle J=\angle N$ and $\angle L=\angle P$.
a) Mark the equal angles on the diagram.
b) Draw line segments $K M$ and $O Q$.
c) $\Delta J K M \cong \Delta$ \qquad by the \qquad congruence rule.

This means $\angle J K M=\angle$ \qquad . Label both these angles w.

This also means $\angle J M K=\angle$ \qquad . Label both these angles x.
d) $\Delta K L M \cong \Delta$ \qquad by the \qquad congruence rule.

This means $\angle L K M=\angle$ \qquad . Label both these angles y.

This also means $\angle L M K=\angle$ \qquad . Label both these angles z.

e) Express the measure of $\angle J K L$ and the angle equal to it in NOPQ using w, x, y, z.
$\angle J K L=\angle$ \qquad
\qquad
f) Express the measure of $\angle J M L$ and the angle equal to it in $N O P Q$ using w, x, y, z.
$\angle J M L=\angle$ \qquad
\qquad
g) Write the congruence statement for the quadrilaterals. \qquad
5. Are the quadrilaterals congruent? Use a ruler and a protractor to check. If yes, write the pairs of corresponding equal sides and corresponding equal angles. Then write the congruence statement.
a) B

b)

Bonus In parallelograms $A B C D$ and $P Q R S$, we have $A B=Q R, B C=P Q$, and $\angle B=\angle Q$. Jake thinks the parallelograms are congruent. Is that correct? Explain.

G8-13 Exterior Angles of a Triangle

An exterior angle is formed by extending a side of a triangle. Angle x is an exterior angle.

1. a) Measure the angles with a protractor and fill in the table.

i)			
$\angle a$			
$\angle b$			

b) Express the measure of $\angle x$ using the measures of $\angle a$ and $\angle b$.

An exterior angle of a triangle is equal to the sum of the two opposite angles in the triangle $(x=a+b)$.

Examples:

$$
\begin{aligned}
x & =88^{\circ}+45^{\circ} \\
& =133^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& a+90^{\circ}=150^{\circ} \\
& a=150^{\circ}-90^{\circ}=60^{\circ}
\end{aligned}
$$

2. Find the missing angle. Show your work.
a)

b)

c)

$\angle x=$ \qquad
$\angle a=$ \qquad
$\angle a=$ \qquad
車)

e)

REMINDER: Angles in a triangle add to 180°.
Two angles that combine to make a straight line add to 180°. $a+b=180^{\circ}$.

3. Find the missing angles. Show your work.
a)

b)

c)

$\angle x=$ \qquad , $\angle y=$ \qquad $\angle x=$ \qquad , $\angle y=$ \qquad
$\angle x=$ \qquad $\angle y=$
\qquad
4. Find the missing angles.
a)

b)

c)

$\angle x=$ \qquad
$\angle x=$ \qquad
$\angle x=$ \qquad
$\angle y=$ \qquad
$\angle y=$ \qquad
$\angle y=$ \qquad
$\angle z=$ \qquad
d)

e)

\qquad
$\angle x=$
$\angle x=$ \qquad
$\angle x=$ \qquad
$\angle y=$ \qquad
$\angle z=$ \qquad
$\angle y=$ \qquad
$\angle y=$ \qquad
$\angle z=$ \qquad
f)

5. Prove that $\angle x=\angle a+\angle b$ using the sum of the angles in a triangle and supplementary angles (angles that add to 180°).
a) What do you know about the measures of $\angle a, \angle b$, and $\angle c$? Explain.
b) What do you know about the measures of $\angle x$ and $\angle c$? Explain.
c) Write two expressions for the measure of $\angle c$ using your answers in parts a) and b).

d) Use the expressions in part c) to explain why $\angle x=\angle a+\angle b$.

G8-14 Corresponding Angles and Parallel Lines

Corresponding angles create a pattern like in the letter F shown:
These pairs of angles are corresponding angles for lines m and n :

1. List the corresponding angles.
a)

$\angle 1$ and \qquad , $\angle 2$ and \qquad
b)

$\angle w$ and \qquad , $\angle x$ and \qquad
$\angle 3$ and \qquad , $\angle 4$ and \qquad $\angle y$ and \qquad , $\angle \mathrm{z}$ and \qquad
2. Measure the corresponding angles a and b. Are they equal or not equal?
a)

$\angle a=$ \qquad , $\angle b=$ \qquad
b)

$\angle a=$ \qquad , $\angle b=$ \qquad

The corresponding angles are \qquad .

The corresponding angles are \qquad .
c)

$\angle a=$ \qquad , $\angle b=$ \qquad
d)

The corresponding angles are \qquad .
$\angle a=$ \qquad , $\angle b=$ \qquad
e)

$\angle a=$ \qquad , $\angle b=$ \qquad

The corresponding angles are \qquad .
f)

$\angle a=$ \qquad , $\angle b=$ \qquad

The corresponding angles are \qquad .

When the lines are parallel, corresponding angles are equal.

3. List the corresponding equal angles.
a)

b)

c)

$$
\begin{aligned}
& \angle 1=\angle 5, \angle 2= \\
& \angle 3=\square
\end{aligned}
$$

$\angle a=$ \qquad , $\angle c=$ \qquad
$\angle 3=$ \qquad , $\angle 4=$ \qquad
$\angle e=$ \qquad
$\angle 5=$ \qquad , $\angle 10=$ \qquad
4. Give the measure of the corresponding angles.
a)

b)

c)

$\angle x=$ \qquad
d)

$\angle x=$ \qquad
e)

$\angle x=\ldots, \angle y=$ \qquad
$\angle x=$
\qquad , $\angle y=$ \qquad
f)
$\angle x=$ \qquad
\qquad
$\angle x=$ \qquad , $\angle y=$
\qquad

When the corresponding angles are equal, the lines are parallel.
5. Find $\angle x$ using supplementary angles. Circle the angle corresponding to $\angle x$. Then draw arrows to show if the lines are parallel.
a)

b)

c)

$$
\angle x=
$$

\qquad $\angle x=$ \qquad $\angle x=$ \qquad

REMINDER: Vertical angles are equal.

6. For each pair of lines that do not intersect in the picture ...

- mark a pair of corresponding angles and find their measures.
- mark parallel lines.
a)

b)

c)

d)

e)

f)

You can use small letters to label lines, too. $\quad \longleftrightarrow$ l
7. Lines ℓ and m are parallel. Use what you know about corresponding and vertical angles to explain why $\angle a+\angle b=180^{\circ}$.

Co-interior angles create a pattern like in the letter " C ": Angles 3 and 5, and angles 4 and 6, are co-interior angles.

These angles are sometimes called same-side interior angles. If the lines a and b are parallel, co-interior angles add to 180°.

If the co-interior angles add to 180°, the lines are parallel.
8. All angles in the quadrilateral $A B C D$ are right angles.
a) Identify a pair of co-interior angles for lines $A B$ and $C D$. Identify a pair of co-interior angles for lines $A D$ and $B C$.
b) Use the angle measures of co-interior angles to explain that these pairs of sides are parallel.

c) I have just proven that a rectangle is a \qquad .

G8-15 Alternate Angles and Parallel Lines

Alternate angles or alternate interior angles make a pattern like the letter Z :
$\angle 3$ and $\angle 6$ are alternate angles for parallel lines m and n.
$\angle 4$ and $\angle 5$ are alternate angles for lines p and r.
Z

1. List the pairs of alternate angles.
a)

$\angle 2$ and \qquad
b)

$\angle 3$ and \qquad
c)

$\angle 2$ and \qquad
$\angle 3$ and \qquad
$\angle 4$ and \qquad
$\angle 11$ and \qquad
2. Measure the alternate angles a and b. Are they equal or not equal?
a)

$\angle a=$ \qquad , $\angle b=$ \qquad
b)

$\angle a=$ \qquad , $\angle b=$ \qquad
The alternate angles are \qquad -

The alternate angles are \qquad .
c)

$\angle a=$ \qquad , $\angle b=$ \qquad
d)

$\angle a=$ \qquad ,$\angle b=$ \qquad
The alternate angles are \qquad .

The alternate angles are \qquad .
3. Fill in the blanks to prove that alternate angles for parallel lines are equal.
$\angle 3$ and \angle \qquad are alternate angles.

Lines m and n are \qquad .
$\angle 3$ and $\angle 7$ are \qquad angles, so $\angle 3=\angle 7$.
$\angle 6$ and $\angle 7$ are \qquad angles, so $\angle 6=$ \qquad -

This means $\angle 3=$ \qquad .
4. Find the missing alternate angles.
a)

b)

c)

$\angle x=$ \qquad
$\angle x=$ \qquad
$\angle x=$ \qquad
d)

e)

f)

$\angle x=$ \qquad , $\angle y=$ \qquad
$\angle x=$ \qquad , $\angle y=$ \qquad $\angle x=$ \qquad , $\angle y=$ \qquad
5. Find the missing alternate, corresponding, supplementary, or vertical angles.
a)

b)

c)

$\angle x=$ \qquad , $\angle y=$ \qquad $\angle x=$ \qquad , $\angle y=$ \qquad
\qquad , $\angle y=$ \qquad
d)

e)

$\angle x=$ \qquad , $\angle y=$ \qquad $\angle x=$ \qquad , $\angle y=$ \qquad

If the alternate angles are equal, the lines are parallel.
6. Find $\angle x$ using supplementary or vertical angles. Circle the angle that is alternate to $\angle x$. Then decide if the lines or rays are parallel.

$\angle x=$ \qquad
parallel not parallel
b) $\stackrel{\text { b }}{\leftarrow} \stackrel{\text { 55 }}{\leftarrow}$
$\angle x=$ \qquad
parallel not parallel
c)

$\angle x=$ \qquad
parallel not parallel
7. Fill in the missing angles. Use arrows to mark parallel lines if they are not marked already.
a)

b)

c)

$\angle x=$ \qquad , $\angle y=$ \qquad
$\angle x=$ \qquad , $\angle y=$ \qquad
$\angle x=$ \qquad , $\angle y=$ \qquad
8. Fill in all the missing angles. Decide which lines or rays are parallel.
a)

b)

c)

9. Sharon wants to prove (using logic) that the sum of the angles in a triangle is 180°.
a) Sharon draws a triangle $A B C$ and labeled the angle measures a, b, and c. Write an equation using a, b, c that she needs to prove. \qquad

b) Sharon draws a line parallel to $A B$ through C. Label the alternate angles on the diagram with their measures.
c) Which angles on the diagram make a straight angle? What do their measures add to? Write an equation. \qquad
d) Did you prove what you needed to prove? \qquad

Bonus

a) Find the measure of $\angle E C N$. Explain how you know.
b) If you extend the lines $M E$ and $C N$, will they intersect? Explain.

