m^{C} Marshall Cavendish

$$
1 \frac{1}{4} \times 1 \frac{2}{3}=\frac{5}{4} \times \frac{5}{3}
$$

Primagr MATHEMATILS

 Teacher's Guide
Grade

PRIMARY MATHEMATICS

Robust fundamentals strengthened and refined

A program with a respected track record, updated with the latest mathematical thinking and best practices.

PRIONARY OAATHENATICS program the premier instructional package that launched the Singapore Math ${ }^{\circledR}$ approach

Singapore students have consistently led in international rankings in Math. But four decades ago, this was not the case.

Singapore's pasł weakness in Math

A survey by the Ministry of Education Singapore in 1975 revealed that primary school students had not mastered basic math skills such as division.

Resolution

Dr. Kho Tek Hong was tasked to solve this problem with a team of nine curriculum specialists. Their challenge: to make an abstract subject easily understandable at a time when English proficiency was quite low.

Their studies and deep research led to the creation of the Singapore Math ${ }^{\circledR}$ approach, and the carefully formulated PRIMARY MAATHEMAATICS series. This series played a key role in raising Singapore's math standards.

Completely New and Updated in 2022
 The meteoric rise of Singapore students' Math performance caught the attention of U.S. educators.

In I999, the original PRIMOARY MATHEMATICS program was introduced to schools and homeschools in the U.S., leading to a marked improvement in student performance.

Over the years, the PRIMARY MATHENOATICS program has been regularly adapted and updated to fully align with U.S. State Standards. The program has always remained true to the original Singapore Math ${ }^{\circledR}$ approach.

Today, a new, updated PRIMARY MATHEMAATICS program has been created, completely aligned to U.S. Standards, and incorporating the latest thinking in the teaching and learning of mathematics.

The NEW PRIMARY MATHEMATILS program -

a Grades K to 5 program, providing a robust math learning journey from Kindergarten to elementary school.

Engaging a new generation of teachers and students, the fundamentals of the original
PRIMARY MATHEMAATICS program have been strengthened with the following:

Learning Experiences

Carefully constructed activities give students opportunities to develop mathematical thinking, metacognition, and $21^{\text {st }}$ century competencies such as critical and inventive thinking, collaboration and communication skills.

Growth Mindset

Activities are designed to instill in students a belief that most abilities can be developed through dedication and hard work. This belief encourages students to maintain a positive learning mindset and to persevere in problem solving.

Assessment \& Dała-driven Reports

Online formative and summative assessment reports help students track their own progress and become self-directed learners. The reports also inform differentiated instruction.

Heuristics

Dedicated problems teach students math problem-solving strategies, developing their ability to think mathematically and extending their problem-solving skills.

Productive Struggle

Students apply prior knowledge and work hard to solve problems slightly above their current level of learning. This productive struggle instill in students perseverance, and develops critical thinking and problem-solving skills.

Digital Resources

Closely integrated print and digital resources enhance the teaching and learning processes. Digital tools help students to visualize and master concepts.

STEAM Project Work

Interdisciplinary projects provide opportunities for collaboration and creative thinking in real-world contexts.

Write-in Student Book

The new PRIMARY MAATHEMATICS Student Book is now a consumable, write-in book, allowing students to work in the book as they learn.

2013

Aligned to the Common Core State Standards

2022
Completely new and updated edition

2008

Approved for the Instructional Materials List by Oregon State Board of Education

Aligned to California State Standards. Approved for schools in California by California State Board of Education

Comprehensive and Integrated Student and Teacher Resources for a Blended Experience

A program packed with learning experiences facilitated by print and digital resources that encourage a growth mindset and confidence in problem solving.

Teaching and Learning

Teachers will facilitate discussions using Interactive Class Presentations and refer to the Teacher's Guides for more strategies to support varied learners.

READINESS

Teachers will address students' learning gaps with the Transition Guide and selected Key Concept Interactives for challenging concepts.
and Interactive Class Presentations.

Lesson Preparation

Teachers will plan how to conduct each lesson using the Teacher's Guides*, Transition Guide,

LEGEND

\square Student Book feature
\square Digital resource

Note: Product offerings may differ from country to country. Refer to the online platform for more details.

Teachers will facilitate the concrete experiences using concrete manipulatives or digital manipulatives to help students visualize the math.

ENGAGEMENT

Students will explore in pairs or groups to examine a problem in the Student Books or eBooks Task, using concrete manipulatives or digital manipulatives where applicable. Next, in Learn, students will be introduced to the fundamental aspect of a concept following a Concrete-Pictorial-Abstract approach. Finally, in Learn Together, students will do questions that are carefully varied. With each question, they will gain understanding of a different aspect of the concept.

Teacher may use the reports from Practice On Your Own* to monitor students' mastery at a lesson level and kickstart Differentiated Instruction found in the Teacher's Guides. Differentiated resources include Additional Practice*, Reteach, and Extension.

Teachers will check and monitor students' performance through the Assessment Guide Teacher Edition or Digital Assessments and the reports.

Components Core Components

As a core component of PRIMARY MATHEMATICS, the
Student Book aims to equip students with strong conceptual understanding, critical thinking, and problem-solving skills. Mathematical concepts are developed in a clear and sequential way to facilitate understanding.

Student Books are also available as eBooks for students to access during home-based learning.

The Teacher's Guide is designed to accompany the Student Book. The guide provides teachers with teaching ideas and arms them with a repertoire of strategies to facilitate exploration, classroom discussions, and student-centric learning. Provided in the Teacher's Guide are ideas for differentiation at appropriate junctures in a lesson, including concept development. Differentiated resources are provided to help with small group learning.

Mastery and Beyond provides consolidated homework across sections in a chapter. Practices in Mastery and Beyond guide students to apply essential mathematical concepts in unfamiliar contexts. This provides continued support to sustain learning and foster a strong foundation for future learning. Together, the Student Book, Additional Practice, and Mastery and Beyond are designed to develop fluency and flexibility in math.

Resources For Differentiafed Instruction

Reteach exercises are written to help students who need additional support gain required conceptual understanding and skills. Each exercise directly correlates to a lesson in each section of a chapter. Greater scaffolding is provided for each teaching point to guide students to acquire the required knowledge. Parallel questions are provided to give students more opportunities to apply the knowledge learned. Tips to help students are provided in the Teacher's Guide at point-of-use.

Additional Practice supplements the Student Book and is targeted at providing students with on-level practice of concepts and skills learned in each chapter.

Extension exercises are written to develop creative problem-solving skills in students. Each exercise directly correlates to a lesson in each section of a chapter. The problems in each

Assessment Opporfuniłies

Assessment is an integral part of the teaching and learning process. The assessment opportunities in PRIMARY MIATHEMATICS offer a complete picture of students' progress.

In the Student Book:

Recall at the start of each chapter assesses students readiness for the chapter. It serves as a diagnostic assessment to measure students prerequisite knowledge. Students will also self assess their readiness using the "I can" statements.

Performance Task is a

formative assessment task at the end of each chapter. It is set in a real-world context that provides opportunities for students to demonstrate their understanding and proficiency.

Practice On Your Own

at the end of each lesson is a formative assessment to inform teachers about the appropriate differentiated resource to assign.

Chapter Practice

at the end of each chapter is used to consolidate students' learning. Students apply the concepts and skills learned in the chapter. The questions are leveled using the Depth of Knowledge to prepare students for summative assessments.

While the assessments in the Student Book are formative in nature, assessments that are available digitally and in the corresponding Assessment Guide Teacher Edition are summative. These assessments serve as a reporting tool for teachers to assess students' learning as well as gather feedback on their teaching.

In the digital assessments and Assessment Guide Teacher Edition, Chapter Tests, Cumulative Assessments, Mid-Year and End-of-Year Assessments are provided to assess students' mastery of concepts and skills. Reports for these assessments are provided to give feedback on students' learning.

- Chapter Test is administered at the end of each chapter to assess students' mastery of the concepts and skills in the chapter.
- Cumulative Assessment occurs at the end of a few chapters to assess students' mastery of the concepts and skills across the chapters.
- Mid-Year and End-of Year Assessments are given to students to assess their mastery levels and provide feedback on their learning midway and at the end of the year.

Chapter Pathway

The instructional pathway across a chapter provides an effective learning experience for small-group and whole-class implementations. The different sections and features in each chapter help students build conceptual understanding through a range of practice and fluency-building activities as well as frequent opportunities for classroom discussions, timely differentiated instruction, and problem-solving opportunities.

SECTION IA

LEGEND

OLesson	Assessment	Homework
Student Book	Differentiated Instruction 迫 Digital	

Strong fundamentals based on proven Singapore Math ${ }^{\circledR}$ approach

PRIMOARY MATHENATILS is centered on the approach developed and used in Singapore since the early 1980s. This approach is still used in Singapore schools today.

What is the SINGAPORE MATH ${ }^{\circledR}$ APPROACH?

The Singapore Math ${ }^{\circledR}$ approach emphasizes developing conceptual understanding, mathematical skills and processes, metacognition, and right attitudes. At the heart of this approach is mathematical problem solving.

Enabling Problem Solving

This is done with a consistent problem-solving process and the use of heuristics. Students are encouraged to persevere to discover mathematical results for varied situations and contexts.

Understanding of the properties and relationships, operations and algorithms

Referred from Singapore Ministry of Education Math Curriculum

All data is taken directly from TIMSS reports, 2019 and PISA reports, 2018.

TIMSS 2019* Grade 4	
Singapore	625
United States	535
TIMSS Scale Centerpoint	500

[^0]| PISA Mathematics | |
| :--- | :--- |
| Scale 2018** | |
| Singapore | 569 |
| OECD average | 491 |
| United States | 470 |

[^1]
Key characteristics of the SINGAPORE MATH ${ }^{\circledR}$ APPROACH

CONCRETE-PICTORIALABSTRACT

VISUAL MODELS

PROBLEM SOLVING

MATHEMATICAL \& PERCEPTUAL VARIATIONS

LEARNING PROGRESSION

DIFFERENTIATION \& ASSESSMENT

Students engage with mathematical concepts by first handling physical objects, then representing mathematical ideas using diagrams, and finally using abstract representations. Through the use of concrete materials and visual representations, students are able to "see" and make sense of the math and the abstract representations.

Visual models such as number bonds, bar models, and fraction models are hallmarks of the Singapore Math ${ }^{\oplus}$ approach. These models help students visualize and understand abstract mathematical concepts.

Heuristics are introduced at each grade level to equip students with strategies to solve increasingly complex problems. Students apply these heuristics to solve real-world problems through a consistent problem-solving process.

Mathematical variation presents opportunities for students to experience the same mathematical concept through various applications. Perceptual variation showcases a mathematical concept using different representations. Variation deepens understanding as students apply mathematical concepts in different ways.

Math is learned incrementally, with one concept building on the next. More depth is added, linking new concepts to the learning that has already taken place. Learning math this way leads to deeper conceptual understanding.

Students' learning is supported through differentiated activities and practices. Students receive timely feedback on their learning through formative and summative assessments.

Rich learning delivered effectively and simply

Progression to MASTERY

In every lesson, mathematical concepts are presented from the simplest and most basic aspect to the most complex aspect for that grade. This is done to build a strong foundation that ensures successful progression to mastery.

With simple language and captivating visuals that support learning, all students can achieve mastery.

Students construct knowledge and build skills through a deliberate set of tasks/questions. Each is carefully designed to expose students to a different aspect of a concept. This process of learning helps students make new connections and progress to the next level of understanding.

Practice On
 Your Own

Purposeful
practice to help students achieve mastery at the end of each lesson

CULTIVATING
 Mathematical Practices

The successful learning of mathematics involves applying the following mathematical practices. These mathematical practices are built into the activities, explorations, practices, and discussions.

MP.I PERSEVERE

MP. 2 REASON
MP. 3 CONSTRUCT VIABLE ARGUMENTS
MP. 4 MODEL
MP. 5 USE TOOLS
MP. 6 USE MATH LANGUAGE
MP. 7 USE STRUCTURE
MP. 8 LOOK FOR PATTERNS

CONSOLIDATING Through "STEAM" Project Work

The ability to synthesize and apply knowledge across disciplines develops important, transferable skills, and engages students' varied interests. Project work combines Science, Technology, Engineering, and the Arts with Mathematics in realistic and relatable contexts. This gives students opportunities to collaborate, and to think creatively and critically.

Structured for effective instruction

PRIMIARY MATHENATILS is based on the Readiness-Engagement-Mastery instructional design.

Phases of
 LEARNING

Readiness-Engagement-Mastery is the instructional model advocated for in the Singapore mathematics curriculum.

READINESS

In this phase, teachers engage students, capturing their attention through interesting and relatable scenarios. Teachers ascertain readiness to learn by helping students make connections to previously-learned concepts and skills.

ENGAGEMENT

Students learn by doing, and are challenged to construct new knowledge through engaging activities and guided inquiry.

MASTERY

Students gain fluency and confidence through leveled practice. They gain mastery through review and reflection in oral and written forms. They also tackle problems in unique and effective ways.

For the "Readiness" phase of learning, students engage in learning through:

- Student Book

- Transition Guide

- Chapter Opener
- Recall

RECALL assesses students' readiness for the chapter so that teachers can allocate appropriate resources during lessons. This is also available online in auto-graded format, with data-driven reports that illustrate students performance levels.

(A) 536,142
(B) 561,342
(C) 563,124
(D) 563,142
2. Write the numbers in standard form.
(a) three hundred fifty-one thousand, two hundred nineteen
(b) six hundred twenty-three thousand, eighty-five
3. Write the numbers in word form.
(a) 708,402
(b) 890,006

CHAPTER OPENER stimulates curiosity and interest through a context that connects Math to real life, taps into prior knowledge, and encourages discussion.
(a) treh

TRANSITION GUIDE is a detailed guide for teachers to transition students into the Singapore math ${ }^{\circledR}$ program. The guide provides teachers with essential background information on important concepts and highlights potential challenges that students might face. It also helps teachers understand the strategies and methodology used in Singapore math ${ }^{\ominus}$.

For the "Engagement" phase of learning, students engage in learning through:

- Student Book
- Task
- Learn
- Learn Together
- Activity!

Name: \qquad Date: \qquad
Multiply by Tens, Hundreds, and Thousands

Learn

$12 \times 10=120$

(1000) 100 (100) $12 \times 100=1,200$
$12 \times 100=12$ hundreds
There are 1,200 cans of cat food in 100 boxes.

There are 12,000 cans of cat food in 1,000 boxes.

TASKS are relatable questions just beyond students' current level of formal learning. They provide opportunities for productive struggle.

LEARN is a teacher-guided inquiry related to the Task. It introduces the most fundamental aspect of a concept for that learning objective. Students learn through concrete experiences and visual models.

DIGITAL MANIPULATIVES

are interactive tools that support teaching and learning.

ACTIVITY! requires students to solve problems collaboratively and to demonstrate understanding by articulating their thinking.

LEARN TOGETHER consists of a series of problems that are carefully varied and progress from the simplest concept in LEARN to more complex ones, developing and deepening students' understanding. LEARN TOGETHER is student-centric. The variation exposes students to the different ways a concept can be tested. This helps them to develop application of concepts in different perspectives.

Learn Together

I. The model shows $\frac{1}{3}$ of $\frac{1}{2}$.

$\frac{1}{3}$ of $\frac{1}{2}=\frac{1}{3} \times \frac{1}{2}$
$=\frac{x}{x}$

$$
\frac{x}{x}
$$

$=$

Chapter 4 Multiplication and Division of Fractions

$$
\frac{1}{3} \text { ot } \frac{1}{2}=\frac{1}{3} \times \frac{1}{2}
$$

For the "Mastery" phase of learning, students gain mastery through these resources:

- Student Book

- Practice On Your Own
- Think!
- Chapter Practice
- Performance Task
- STEAM Project Work
- Heuristics
- Reteach
- Additional Practice
- Extension
- Mastery and Beyond

PRACTICE ON YOUR OWN is an independent practice at the end of a lesson. It serves as a formative assessment, informing teachers which differentiated resources they should assign to their students. This is also available online in auto-graded format, with datadriven reports that illustrate students' performance levels.

THINK! leads students to reflect on mathematical concepts and challenges them to use different strategies to solve a novel problem.

Think!

4. REASON Brooke, Isaac, and Hannah compared the heights of the rose plants they grew for a Science experiment. Brooke's rose plant was 6 inches tall. Isaac's rose plant was $\frac{5}{6}$ the height of Brooke's rose plant. Hannah's rose plant was $\frac{4}{3}$ the height of Brooke's rose plant. Without multiplying, identify which rose plant belongs to which student. Explain your thinking.

$$
\begin{aligned}
& \text { Pot } x: \\
& \operatorname{Pot} y: \\
& \operatorname{Pot} z:
\end{aligned}
$$

Practice On Your Own

I. Multiply. Express your answers in simplest form.
(a) $1 \frac{1}{5} \times 1 \frac{1}{2}$

(b) $1 \frac{5}{6} \times 1 \frac{1}{3}$

r-

PERFORMANCE TASKS are formative assessment tasks, set in real-world contexts, with accompanying rubrics. The questions require application of concepts and skills learned or they may be open-ended but with limited possible answers.

STEAM PROJECT WORK is an interdisciplinary task that spans multiple chapters and shows the relevance and importance of mathematics. It promotes critical and creative thinking.

Performance Task

Camila is planning a trip to Sweden, Sri Lanka, and Columbia. She exchanges some foreign currencies using the exchange rates shown.

Exchange I U.S. Dollar (USD) for		
Sweden Krona	SEK	10
Sri Lankan Rupee	LKR	200
Columbian Peso	COP	3,000

I. How much of each currency will Camila receive if she exchanges 390 USD each time? Show your work.
2. REASON AND MODEL Camila bought some souvenirs when she was in Sri Lanka. She spent a total of 36 USD on four souvenirs.

Using a table, make a list of the four souvenirs that have bought.

Name:

Chapter Practice

I. Fill in the blank.
$6,000,000+50,000+300+4=$
(A) $6,050,304$
(B) $6,050,340$
(C) $6,053,004$
(D) $6,534,000$

CHAPTER PRACTICE

2. The value of the digit 4 in the number $5,243,876$ is 10 times the value of the digit 4 in which of the following number?
(A) $5,295,142$
(B) $6,428,697$
(C) $7,314,950$
(D) $8,982,431$
3. Write $3,845,712$ in word form. independent practice. This is also available online in auto-graded format, with datadriven reports that illustrate students' performance levels.

4. Fill in the blanks.
(a) \qquad $\times 1,000=3,079,000$
(b) $248 \times 10^{2}=$
(c) $5,204 \times \longrightarrow=5,204,000$
(d) $20 \times 9,000=18 \times$

Name: \qquad Date: \qquad

RGorach
THE FOUR OPERATIONS WITH WHOLE NUMBERS

Exercise 2A Order of Operations (1)

Example 1

There were 18 eggs on a tray.
8 of them were used to make some omelettes.
6 more eggs were added to the tray.
How many eggs were there on the tray in the end?

\qquad
 from left to right
\qquad $+6$ $=16$

There were 16 _ eggs on the tray in the end.

EXTENSION consists of novel

 and higher-order thinking problems to motivate students with challenging practice.Name: \qquad Date:

EEJVEMSTOT
WORD PROBLEMS: THE FOUR OPERATIONS OF FRACTIONS

Exercise 5A Word Problems (1)

I. Michelle spent $\frac{3}{4}$ hour practicing the piano on Monday. She spent $\frac{1}{6}$ hour longer practicing the piano on Monday than on Tuesday.

ADDITIONAL PRACTICE provides on-level practice at the end of each lesson. This component enables students to hone their skills and sharpen their grasp of concepts.

Exercise 4A Product of Fractions and Whole Numbers (1)
I. Multiply.
(a)

$10 \times \frac{3}{5}$
(b)

$\frac{3}{4} \times 16$
2. Multiply. Express the products in simplest form.
(a) $27 \times \frac{5}{6}$
(b) $30 \times \frac{3}{8}$
(c) $20 \times \frac{8}{3}$
(d) $24 \times \frac{7}{5}$

On Wednesday, she spent twice as much time practicing the piano than on Tuesday. How much time did Michelle spend practicing the piano altogether? Express your answer as a mixed number in simplest form.

About this Teacher's Guide

Quality resources, ideas, and strategies make your planning seamless and your lessons coherent.

MULTI-DIGIT WHOLE NUMBERS

Across-Grades Progression

Looking Back	Looking Here	Looking Ahead
Grade 4 Chapter 1 Section IA Numbers to $1,000,000$ - Place Value Section IB Compare and Order Numbers - Compare and Order Numbers Within 1,000,000 - Number and Shape Patterns Grade 4 Chapter 3 Section 3D Multiply by Tens, Hundreds, and Thousands - Multiply a number by multiples of 10 , 100, and 1,000	Grade 5 Chapter 1 Section IA Numbers to IO Million - Numbers to 10 Million and Place Value Section IB Multiply by Tens, Hundreds, and Thousands " Multiply by Tens, Hundreds, and Thousands a Multiply by Powers of IO Section IC Divide by Tens, Hundreds, and Thousands	Grade 6 Exponential Notation and Prime Factorization - Express a composite number as a product of its prime factors. - Find the common factors and and the greatest common factor of two whole numbers. - Find the common multiples and the least common multiple of two whole numbers. - Write and evaluate numerical expressions involving whole number exponents.

Across-Chapters STEAM Project Work

This project spans Chapters and 2. Students are given an opportunity to make connections betweencion cmblyopia affect children ond learn the science behind myopia or ambyopia, the reasons tor the rise in these conditions, how myopia or amblyopia offect children, and
what can be done to prevent myopia or amblyopia. This task requires students to opply their knowledge of numbers to 10 million to find the estimated population with myopia or amblyopia and how many children are myopic or have amblyopia. In Chapter I. students will work in smoll groups to choose one of the topics to research, then design a brochure to share prevention tips. In Chapter 2 , students will think o a slogan for the brochure and make a "Secret Message Puzze." To help their classmates solve the secret ese, they will provide clues that will require them to solve questions involving multiplication and division of 3 -digit by 2 -digit numbers.

ACROSS-GRADES PROGRESSION shows a longitudinal progression providing an overview of prior knowledge in Looking Back, current grade learning objectives in Looking Here, and future learning in Looking Ahead.

ACROSS-CHAPTERS STEAM PROJECT WORK provides a brief background of the project work and how it relates to Math and other disciplines. The write-up also explains how the skills involved are related to the chapters the project work spans, and breaks down the tasks to be distributed over the chapters.

CHAPTER OVERVIEW provides

 embedded professional development by providing insights into the Key ideas of the chapter. Concrete-Pictorial-Abstract Progression provides an overview of the concrete materials used, pictorial and abstract representations students will encounter in the chapter.Chapter Overview

Key Ideas

(10) 100×100

Concrete-Pictorial-Abstract Progression

-○○○○○○○○○

These place-value chips show division by 1.000 .
After students have built their understanding through concrete
ond pictorial representations, they will move to the obstract stage and pictorial representations, they will move to the obstract stage
where they apply the understonding of place-value concepts to where they apply the understanding of place-value concepts to
generolize eatterns in mutiplying and dividing by tens, hundreds.
thousands, and powers of ten.

Chapter Progression

CHAPTER PROGRESSION

is an overview of what students will learn in each section of the chapter.
In Section 5A, students use bar
comparison problems involving the four operations of fractions using the unitary method. Students also use bar models

(1.) 6 units $=1,728$ square m
$\begin{aligned} & 1 \text { unit }=1,728 \div 6 \\ & =288 \text { s.aure } \\ & 2 \text { units }\end{aligned}=2 \times 288$

Chapter at a Glance

CHAPTER AT A GLANCE
shows the lesson objectives, focus questions, I CAN statements, new vocabulary, materials, and instructional resources necessary to prepare for teaching.

CHAPTER OPENER supports teachers with suggestions to engage students in mathematical conversations.

ENGLISH LANGUAGE SUPPORT provides strategies for teachers to guide and support students in learning and using mathematical language.

PROMOTING GROWTH highlights common learning difficulties that students may encounter in the chapter and provides strategies to help students overcome them.

INTERACTIVE CLASS PRESENTATIONS are time-saving and customizable with clearly displayed notes for teachers.

RECALL highlights the learning objectives of each question and provides questioning prompts for classroom discussions.

I CAN STATEMENTS

identify the learning goals for each lessons. These statements are used at Lesson Debrief for students to reflect on their learning.

LESSON OPENER provides teaching ideas for teachers to orchestrate concrete experiences in TASK.

LESSON

 DEVELOPMENTprovides ideas for concrete experiences and support at different levels of mastery.

CAUTION highlights common errors and provides suggestions to rectify the errors.

ACTIVITY! provides the intent of the collaborative task, the steps to carry out the task, and suggested prompts to facilitate discussions.

LEARN TOGETHER gives prompts and questions to lead students towards deeper understanding.

EXTENSION provides suggestions to challenge students and help them apply concepts in different situations.

Lesson 5
4B Product of Fractions (1)

$\underset{\substack{\text { ICAN } \\ \text { Icon } \\ \hline}}{ }$

- I can use visul models tom utitily a proper fraction by oproper froction.
Icen find the orea of rectanges with

Mathematical Practice(s)

Mathenotical
-2 Reson
-4 Model
$\therefore \begin{aligned} & 4 \text { Model } \\ & 5 \\ & 5 \text { se Tools }\end{aligned}$
-6 Use Math Longugage
Material(s)
-3 sheets of
3 sheets of rectangular paper per pair or small group
PRODUCT OF FRACTIONS (poges 169 to 174)
(9.) Lesson Opener

- You may use the appropriate digital manipulatives to in Section 4B. Group students in pairs or small groups. Provide them with a sheet of rectangular paper. Hove students work on the task. Observe student
discussions. After student following prompts to attempted the task, use the Pay ottention to the language a students sus sion. - What do you know about the sudents 3 . ${ }^{3}$. What do you know about the problem? $\frac{3}{4}$ of the flag
was colored orange ond $\frac{1}{2}$ of the colored part had stripes added What do you need to find? The fraction of the flog that was colored orange and had stripes. How will you represent the problem using the
rectangular paper? rectangular paper?
(i) Lesson Development

Learn (page 169)

- Display the task on page 169 .
\qquad

s

FOCUS QUESTION
at the start of the lesson helps teachers shape the learning objectives of the lesson and enable students to keep the focus of the lesson in mind.

BEST PRACTICE

provides tips and suggestions to engage students and better enhance students' learning.
should fold the paper into fourths first, because they are
finding $\frac{1}{2}$ of $\frac{3}{4}$ Invite students to share their models and

QUESTION I requires students to multiply proper fractions with the support of a bar model.
Invite students to moke a paper str Io show $\frac{1}{3}$ of $\frac{1}{2}$. - How can you show $\frac{1}{3}$ of $\frac{1}{2}$? What do you do first? What do you do next?

- Display the model on page 170. Encourage students to compare and discuss how similicr or different their paper
strips ore from the model shown. - How similar or different is your paper strip compared to the model shown on the book? How many equal parts are there
in the model? 6 Why do you think there are 6 parts? Idivide in the model? 6 Why do you think there are 6 parts? I divide
the paper strip into halves first, then divide each half into the paper strip in
3 equal parts.
 rectangle with fractional side lengths using two methods,
by tiling s surare by tiling square units and by multitlying the side lengths.
Remind students that finding area is to find the amount of - space occupied by a figure.
- Have students cut out a square from a sheet of paper to represent the squore of side length y yord. - Invite studentst to fold the square paper into fourths vertically.
then into thirds horizontally. - Hove students unfold the paper and observe the small rectangles formed by the fold lines.
How many small rectangles do you see? 12
- How many small rectangles do you see? 12 $\frac{2}{3}$ Lead students the side that is $\frac{3}{4}$ yord is made up of three $\frac{1}{4} \frac{1}{4}$ yard units and the side that is $\frac{2}{3}$ yard is made up of two $\frac{1}{3}$-yard units. What do you think is the area for one unit? $\frac{1}{1}$ square yard How do you know? I multiply $\frac{1}{4}$ by $\frac{1}{3}$. How many units across How do you know? 1 multitily $\frac{3}{4}$ by . How many units across
show I yard? 4 What doess $\frac{3}{4}$ yard mean? It means 3 fourths of
a yard.
Activitu! (page 170)
- This activit reinfor
- Group students in in pairs or small groups. Provide them with
sheet of rectangulor paper.
- Invite students to fold and color the paper to show $\frac{3}{4}$ of $\frac{1}{2}$.

170 Chapter 4 Multiplication and Division of Fractions
continued

PRACTICE ON YOUR OWN provides the learning objective of each question as well as describes the variation between questions for mastery of the lesson.

LESSON DEBRIEF wraps up the lesson by posing focus questions for students to articulate their understanding through conversation or journalling and for teachers to evaluate students' level of understanding.

FOCUS QUESTION serves as a reflection question for teachers to assess and evaluate students' learning. It also provides the opportunity for students to reflect and demonstrate how well they have learned in the lesson. Strategies to promote reflective thinking and a learning mindset are also provided in Promoting Growth.
tens, hundreds, and thousands by break

- Use similor prompts os for Question 3 .
QUESTION 5 requres
- Use similar prompts as for Question 3 .
- QUESTION 5 requires students to complete the table and
explore the pattern when dividing by 10 .
explore the pattern when dividing by $10,10^{2}$, and $10{ }^{3}$.
What patterns do you see? As the divisors become gre
What patterns do you see? As the divisors become greate
the quotients become lesser. The exponent shows the
number of zeros to reduce in the quatient. How can you use
multiplication to check your answer? multiply the quotient multiplication to check your answer? multiply the quotien the divisor

26 Chapter I Multi-Digit Whole Numbers

ADDITIONAL SUPPORT
provides suggestions for students who might need extra help understanding concepts.

THINK! provides higher-order thinking questions and prompts to facilitate discussions.

DIFFERENTIATED INSTRUCTION
suggests activities for students at different levels of mastery.

CHAPTER WRAP UP provides ideas to encourage reflection, consolidation of learning, and reviewing of key ideas.

Roadiness Engogement Mastery
 Lesson 12

Chapter Wrap Up

- Before students work on Performance Task, help them recall

Self-Reflection on page 90B.
English Language Support
Guide students to create a list of the key vocabulary words
in the chapter. Help reinforce the vocabulary using the
following statements.

1. An example of an is $15-6+4$. expression
2. In the expression $2 \times(4+5)$, we have to add 4 and 5 first
because of the
parentheses
3. We use the - to know the order
the operations. order of operations
4. In the expression $125-5 \times(18 \div 2)$, we - first, then we
__ and finally __ divide; multiply; subtract

PERFORMANCE TASK outlines the objectives of each question and provides prompts to facilitate students' self-awareness, monitoring, and learning.

Performance Task

- Refer students to the Performance TTask and explain that it
will help them consolidate and deepen their understanding of will help them consolidate and deepen their understanding of
the chapter through tasks that require them to show, explain, and/or apply their thinking.
- Display the rubric to encourage students to set their own go

QUESTION (a) requires students to use the division and
multiplication to find the cost of Package A.
multiplication to find the cost of Package A.
What do you know about the relationship between the
admission price and the number of students? How can th
admission price ond the number of students? How can that
help you find the cost of Package A ?
${ }^{\text {QUESTION }(b)}$ a better deal.
What do you need to find first? What do you need to find
next? What do you need to consider when determining the
next? What do you need to consider when determining the
Package B? Which is a better deal?

	ditional Support
Material(s): connecting cubes, Square Grid (TRO4)	
	Write $4+3 \times 2$ on the board and have students model the expression with connecting cubes.
	Similarly, write ($4+3$) $\times 2$ on the board and have students model the expression with connecting cubes.
	Guide students to find the value for each expression using the connecting cubes.
	Prompt students to share and discuss how the two expressions are different
	How did you represent each expression using connecting cubes? Do both expressions have the same value? Why or why not?
	Assign Reteach 5 and/or Additional Practice 5A, Exercise 2A (2) as appropriate to each student.

On-Level Practice

- Encourage students to make connections to what they have previously learned. Invite them to give examples to
show their think begin by asking the following question
- How do you write numerical
expressions using
parentheses? Wher write the parentheses? How does Order of operations help you evoluate and interpret expressions?
If time permits, encourage
students to discuss their work students to discusss heil
and share their ideas.
Assign Additionol Practice 5 A
and/or Extension 5 , nd/or Extension 5 . Exercise 2 A (2) as \square

Differentiated Instruction

the criteria given.

STEAM PROJECT
WORK provides a
reminder of the ongoing project and the stage students should be at.

$$
\begin{aligned}
& \text { RUBRIC provides the scoring } \\
& \text { guide for each question in } \\
& \text { the Performance Task and } \\
& \text { relates the points scored to } \\
& \text { the criteria given. } \\
& \hline
\end{aligned}
$$

- Use the scoring guide to help pou give feedback on students'
work. Use the comments section to provide information about work. Use the comments section to provide informotion about
what was done well and what could be improved. Write words of encouragement to let the students know what they have done well.

. The digt th the ene thouenodse to

M
M
The datit the emilons place s m more thon the digtt th the
The digtrin the te en

(0)00.001

lace-value to

- (a) reason if a number made wint the given digits is the
greatest number.
- (b) make the greatest number with the given digits an
construct vioble arguments to suport their onswer

Does your answer make sense? Why or why not? How ca you justify your answer? What convinced you that your answer is correct?
QUESTION 10 requires students to identify and reason the
pattern to multiply a 3 -digit number by thousands or powers of 10 . - Where might you start studying the pattern? How can you express 3,000 using powers of 10 ?
QUESTION II requires students to use clues and thein
Where would you start? How might a place-value chart
help you keep track of the digits in the number? Does your answer make sense?

Readiness Engagement Mastery
Lessons 10-11
Chapter Test
Assign Chapter Test I digitally to assess students understanding of the chapter

- If you want students to show their work, print out the test in Assessment Guide Teacher Edition and have students do so Assessment
on their copy.

CHAPTER TEST is a summative assessment to assess students' understanding of the chapter.

CHAPTER SELF-REFLECTION
provides students the opportunity to reflect on their learning.

Chapłer Self-Reflection
Check (\checkmark) to show what I can do.

I Can	Yes	Not Sure	No
read and write numbers to 10 million.			
state the value of each digiti in multi-digit numbers.			
recognize that the value of a digit in one place is 10 times what it represents in the place to its right.			
recognize that the value of a digit in one place is $\frac{1}{10}$ of w wat it represents in the place to its left.			
multiply numbers by 10,100 a and 1,000.			
multiply numbers by tens, hundreds, and thousands.			
explain patterns in the number of zeros of the product when multiplying numbers by 10,100 , and I,000.			
use whole number exponents to write powers of 10 .			
multiply numbers by powers of 10 .			
explain patterns in the number of zeros of the product when multiplying a number by powers of 10 .			
divide numbers by 10,100 , and 1,000 .			
divide numbers by tens, hundreds, and thousands.			
explain patterns in the number of zeros of the quotient when dividing numbers by 10,100 , and 1,000 .			

Developed by an expert panel

Bring the best practices of seasoned educators, developers of teachers, and champions of Singapore Math ${ }^{\circledR}$ into your classroom!

Consultants

Dr. Kho Tek Hong, Ph.D.

played a key role in putting Singapore Mathematics on the world map and is responsible for shaping Singapore's mathematics curriculum development. As a Project Director for the Primary Mathematics Project at Ministry of Education (MOE), Singapore, Dr. Kho led a team of curriculum specialists to create high-quality teaching and learning materials, and to develop the Model Method in the 1980s. This method is a pictorial way to represent mathematical quantities, and has proven to be a very successful problem solving tool over the decades.

Dr. Kho was a Mathematics teacher before becoming a lead curriculum designer, and then a principal curriculum specialist in MOE until his retirement. He was also a consultant to the MOE Mathematics Unit, Curriculum Planning and Development Division, and oversaw the school mathematics syllabus formulations since the late 1970s and remained involved in an advisory role in recent syllabus revisions.

Dr. Lee Ngan Hoe, Ph.D.

is an Associate Professor in the Mathematics \& Mathematics Education Academic Group at the National Institute of Education, Nanyang Technological University, Singapore. He taught Mathematics and Physics in a secondary school before becoming a Gifted Education Specialist at the Ministry of Education, Singapore.

Dr. Lee is an active researcher and speaker at conference presentations. His key areas of focus are mathematics curriculum development, metacognition, and mathematical problem solving/modelling. His research includes international comparative studies, such as the Teacher Education Study in Mathematics (TEDS-M) and the International Comparative Research to Identify Unique and Promising Practices in Mathematics and Science Teacher Preparation for APEC Economies. He has also co-authored two primary mathematics packages, Shaping Maths and Maths Works, used in Singapore schools.

U.S. Consultant

Susan F. Resnick, MA

began her career as an educator in 1988. Since then, she has gathered more than 30 years of experience as a K-I2 Special Education teacher, licensed math interventionist, public and private school teacher, principal, and District Math Coordinator. Susan also served as a curriculum consultant to Turnaround districts and is an Affiliate Professor of Special Education, Principal Licensure, and Teacher Leadership at a local university.

A seasoned champion of Singapore Math ${ }^{\circledR}$, Susan is working with students, teachers, coaches, and administrators to implement Singapore Math ${ }^{\circledR}$ strategies in the United States and other countries.

Student Book Author

Dr. Cheng Lu Pien, Ph.D.

is a senior lecturer in the Mathematics and Mathematics Education Academic Group at the National Institute of Education, Nanyang Technological University, Singapore. She specializes in mathematics education courses for primary school teachers. Her research interests include the professional development of primary school mathematics teachers, reflective practice, innovative teaching practice, task design in mathematics education, and developing children's mathematical thinking in the mathematics classrooms.

Teacher's Guide Authors

Jessica Kaminski, M.Ed.

was a teacher, academic coach, and consultant for over I5 years. She successfully put Singapore Math ${ }^{\circledR}$ to work in her classrooms. Convinced about its effectiveness, she went on to train teachers in over 55 districts across the United States, helping them to implement Singapore Math ${ }^{\circledR}$ strategies effectively in their classrooms.

Jessica now works as a consultant providing coaching, support and online courses for educators. Her passion is to provide customized professional development with a focus on differentiated instruction. Jessica has a Bachelor of Science in Elementary Education and a Master of Science in Special Education with an emphasis on Gifted Education.

Dr. Janice Cordes, Ph.D.

was an elementary and middle school teacher, as well as a middle school Assistant Principal and Principal. Since 2009, she has been delivering Singapore Math ${ }^{\circledR}$ professional development to both public and private schools in urban, suburban, and rural districts across the United States and has delivered math workshops at regional and state math conferences.

Janice has a Bachelor of Arts in Elementary and Special Education, a Master of Arts in Educational Processes, and a Doctorate in Education in Educational Leadership/ Administration.

[^0]: *https://timss2019.org/reports/ achievement/

[^1]: **https://www.oecd.org/pisa/ Combined_Executive_Summaries_ PISA_20I8.pdf

