

# Scope & Sequence

A Reason For® Science

Published by The Concerned Group

#### A NEW PARADIGM

for children — young minds created and to discover!

children really learn, A Reason For® that is presented this way because **Science** uses a different paradigm they never become engaged with the from traditional textbooks. Why? In an material. effort to address standards and accountability, many of today's science ence is based on the premise that direct conflict with the central goal of

**A Reason For® Science** is designed textbooks get learning backwards. They focus primarily on building a by an infinite God with an unlimited knowledge base, assuming students capacity to think, to learn, to explore, will later attach meaning to memorized facts. The problem is that very few el-Because of its emphasis on how ementary students master information

By contrast, A Reason For® Sci-

learning science is an ACTIVE process. It is "something children do, not something done to them."1

According to the National Science Education Standards, "... active science learning means shifting emphasis away from teachers presenting information and covering science topics. The perceived need to include all the topics and information . . . is in

having students learn scientific knowledge with understanding." 2

Or to paraphrase William Butler Yeats. "Great science teaching is not filling up a pail. It's lighting a fire!"

#### **INQUIRY-BASED LEARNING**

A Reason For® Science is designed such as group discussion, problem to teach basic Life, Earth, and Physical solving, and journaling. It also requires Science concepts through fun, handson activities. Its focus is to make learning both fun and meaningful.

selves are never enough. In order to quiry-based model. truly master a concept, students must have "minds-on" experiences as well! ence Education Standards, "Inquiry ing skills."3 This means actively engaging the material through a variety of methods engaging in inquiry, students describe understanding in different ways and

thought-provoking questions that help develop higher-level cognitive skills. The weekly format of A Reason For® But hands-on activities by them- **Science** is designed to reflect this in-

> According to the National Sciis central to science learning. When

objects and events, ask questions, to different degrees, the flexible forknowledge with reasoning and think-solutions.

Since different students achieve

construct explanations, test those ex- mat of A Reason For® Science also planations against current scientific encourages multiple learning styles knowledge, and communicate their and allows for individual differences. ideas to others... In this way, students Each activity challenges students to actively develop their understanding develop their own unique skills, and of science by combining scientific encourages them to think of creative

### **NATIONAL STANDARDS**

The "National Standards" referred to in the "K-4 Science Content Standards" (p.121 - 142) and "5-8 Science Content Standards" (p. 143 - 172).

Teacher Guidebooks include a list National Science Education Stan- each individual lesson. References are dards<sup>1</sup>. More specifically, they reflect based on the NSES alphabetic format, plus a numeric code to indicate the the **Standards**.) bulleted sub-topic.

For example, C1 in a fourth grade upper grade standards are found in function of living systems").

lesson, would indicate Content Stan- different sections. A C1 reference for a this Scope & Sequence are from the of the content standards that relate to dard C and sub-topic 1. (A detailed third grade lesson, for example, would description of the C1 content stan- be found on page 127 (characteristics dard is found on pages 127 - 229 of of organisms). By contrast, a C1 reference for a seventh grade lesson would As noted above, lower grade and be found on page 155 ("structure and

<sup>1</sup> National Science Education Standards, 1999. Washington, D.C.: National Academy Press. (p. 2); <sup>2</sup> Ibid. (p. 20); <sup>3</sup> Ibid. (p. 2)

## Level H (Grade 8)

| esson | Category                         | <b>Topic/Focus</b>              | Objective                                                        | National Standards                             |
|-------|----------------------------------|---------------------------------|------------------------------------------------------------------|------------------------------------------------|
|       | Life Science                     | Life Cycles                     | To conduct a controlled experiment                               | A1, A2, C2, C3, C5, G1, G2                     |
| 2     | Life Science                     | Plant Preservation              | To explore how plants are preserved for future study             | A1, A2, C1, C5, G1, G2                         |
| 3     | Life Science                     | Classification                  | To explore grouping by characteristics                           | A1, A2, C1, C2, C4, C5, F2, G1, G2             |
| 4     | Life Science                     | Genetics                        | To examine a sample of DNA                                       | A1, A2, C1, C2, C3, C5, F1, G1, G2             |
| 5     | Life Science                     | Mitosis                         | To explore how chromosomes stay constant when cells divide       | A1, A2, C1, C2, C3, C5, F1, G1, G2             |
| 5     | Life Science                     | Meiosis                         | To explore how cell division creates gametes, determining gender | A1, A2, C1, C2, C3, C5, F1, G1, G2             |
| 7     | Life Science                     | Fertilization                   | To explore how fertilization restores the right # of chromosomes | A1, A2, C1, C2, C3, C5, F1, G1, G2             |
| 3     | Life Science                     | Biological Uniqueness           | To explore human differences by observing fingerprints           | A1, A2, C1, C2, C5, F1, F5, G1, G2             |
| )     | Life Science                     | Genetics                        | To explore how gene combinations create unique individuals       | A1, A2, B1, C1, C2, C5, F1, F4, G1, G2         |
| 10    | Physical Science (Forces)        | Scientific Models               | To explore changes in our understanding of the atom              | A1, A2, B1, B2, E1, E2, F5, G1, G2             |
| 11    | Physical Science (Forces)        | Surface Tension                 | To explore how water molecules attract each other                | A1, A2, B1, B2, G1, G2                         |
| 12    | Physical Science (Forces)        | Energy Conversion               | To explore converting kinetic energy to potential energy         | A1, A2, B1, B2, B3, G1, G2                     |
| 13    | Physical Science (Forces)        | Forces and Energy               | To explore the energy efficiency of a force                      | A1, A2, B1, B2, B3, E1, E2, F5, G1, G2         |
| 14    | Physical Science (Forces)        | Energy Conversion               | To explore converting kinetic energy to potential energy         | A1, A2, B1, B2, B3, F5, G1, G2                 |
| 15    | Physical Science (Forces)        | Gravity                         | To explore an object's center of gravity                         | A1, A2, B1, B2, B3, G1, G2                     |
| 16    | Physical Science (Forces)        | Buoyancy                        | To explore how density affects buoyancy                          | A1, A2, B1, B2, G1, G2                         |
| 17    | Physical Science (Forces)        | Transfer of Forces              | To explore how structure can transfer forces                     | A1, A2, B1, B2, B3, E1, E2, F4, F5, G1, G2     |
| 18    | Physical Science (Forces)        | Inertia                         | To explore how design affects force                              | A1, A2, B1, B2, B3, E1, E2, F4, F5, G1, G2     |
| 19    | Earth Science                    | Air Pressure I                  | To explore the balance of forces                                 | A1, A2, B1, B2, D1, G1, G2                     |
| 20    | Earth Science                    | Air Pressure II                 | To explore how heat affects air pressure                         | A1, A2, B1, B2, D1, G1, G2                     |
| 21    | Earth Science                    | Global Magnetism                | To explore magnetic fields                                       | A1, A2, B1, B2, D1, D2, G1, G2                 |
| 22    | Earth Science                    | Geosynchronous Orbit            | To explore ways objects move in space                            | A1, A2, B1, B2, D3, G1, G2                     |
| 23    | Earth Science                    | Topography                      | To explore topographic maps                                      | A1, A2, B1, D1, F2, G1, G2                     |
| 24    | Earth Science                    | Identifying rocks & minerals I  | To explore testing methods for rocks and minerals                | A1, A2, B1, D1, D2, G1, G2                     |
| 25    | Earth Science                    | Identifying rocks & minerals II | To explore more testing methods for rocks and minerals           | A1, A2, B1, D1, D2, G1, G2                     |
| 26    | Earth Science                    | Natural Resources               | To explore the challenges of recovering natural resources        | A1, A2, D1, D2, E1, E2, F2, F4, F5, G1, G2     |
| 27    | Earth Science                    | Fossils                         | To explore how scientists map a "dig"                            | A1, A2, C4, C5, D1, D2, G1, G2                 |
| 28    | Physical Science (Energy/Matter) | Ultraviolet Light               | To explore properties of ultraviolet light                       | A1, A2, B1, B3, E1, E2, F1, F3, F4, F5, G1, G2 |
| 29    | Physical Science (Energy/Matter) | Refraction                      | To explore how refraction affects light                          | A1, A2, B1, B3, E1, E2, F5, G1, G2             |
| 30    | Physical Science (Energy/Matter) | Sound                           | To explore sound using homemade instruments                      | A1, A2, B1, B2, B3, E1, E2, F5, G1, G2         |
| 31    | Physical Science (Energy/Matter) | Density                         | To explore how displacing matter creates buoyancy                | A1, A2, B1, B2, B3, E1, E2, F5, G1, G2         |
| 32    | Physical Science (Energy/Matter) | Electricity                     | To explore circuits and conductivity                             | A1, A2, B1, B2, B3, E1, E2, F5, G1, G2         |
| 33    | Physical Science (Energy/Matter) | Laws of Matter                  | To explore two primary laws of matter                            | A1, A2, B1, B2, E1, E2, F5, G1, G2             |
| 34    | Physical Science (Energy/Matter) | Types of Energy                 | To explore how energy converts to motion                         | A1, A2, B1, B2, B3, E1, E2, F5, G1, G2         |
| 35    | Physical Science (Energy/Matter) | Changes in Matter               | To explore chemical and physical change                          | A1, A2, B1, E1, E2, F5, G1, G2                 |
| 36    | Physical Science (Energy/Matter) | Indicators                      | To explore how indicators work                                   | A1, A2, B1, E1, E2, F1, F5, G1, G2             |